Unresolved puzzles in exotic nuclei

March 27, 2018, Springer
Unresolved puzzles in exotic nuclei
Credit: Springer

Research into the origin of elements is still of great interest. Many unstable atomic nuclei live long enough to be able to serve as targets for further nuclear reactions—especially in hot environments like the interior of stars. And some of the research with exotic nuclei is, for instance, related to nuclear astrophysics. In this review published in EPJ A, Terry Fortune from the University of Pennsylvania, in Philadelphia, USA, discusses the structure of unstable and unbound forms of Helium, Lithium, and Beryllium nuclei that have unusually large neutron to proton ratios—dubbed 'exotic' light nuclei. The author offers an account of historical milestones in measurements and the interpretation of results pertaining to these nuclei.

Each chemical element is composed of atoms. At the centre of each atom is a nucleus containing nucleons, namely neutrons and protons. Some are unstable and are prone to emitting an electron, via beta decay, particularly when they have a large number of neutrons compared to protons. For example, Helium-8, with six neutrons and two protons, is unstable. It beta decays into a form of lithium with 3 protons and 5 neutrons, dubbed Lithium-8. Eventually, as more and more neutrons are added, the nucleus becomes unbound to emission. But the properties of these unbound nuclei can still be investigated by producing them in a nuclear reaction and detecting their decay products.

In this review, the author outlines the available experimental information and the models that have been applied to 'exotic' nuclei. The laws of physics relating to the nuclear properties of these nuclei prevail even though some of them are not typically observed in normal nuclei. The author also delineates some of the unresolved puzzles concerning the connection between microscopic structure and the values of quantities that are observable experimentally— particularly the interplay between energies, widths or strengths and . For example, physicists have yet to resolve what is the occupancy of an orbital, called 2s1/2, in the ground state of beryllium-12? Or what is the nature of the unbound ground state of helium-10?

Explore further: The nucleus—coming soon in 3-D

More information: H. T. Fortune, Structure of exotic light nuclei: Z = 2, 3, 4, The European Physical Journal A (2018). DOI: 10.1140/epja/i2018-12489-2

Related Stories

The nucleus—coming soon in 3-D

March 5, 2018

Physicians have long used CT scans to get 3-D imagery of the inner workings of the human body. Now, physicists are working toward getting their first CT scans of the inner workings of the nucleus. A measurement of quarks ...

Recommended for you

Engineers invent groundbreaking spin-based memory device

December 7, 2018

A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability ...

Multichannel vectorial holographic display and encryption

December 7, 2018

Holography is a powerful tool that can reconstruct wavefronts of light and combine the fundamental wave properties of amplitude, phase, polarization, wave vector and frequency. Smart multiplexing techniques (multiple signal ...

A new 'spin' on kagome lattices

December 7, 2018

Like so many targets of scientific inquiry, the class of material referred to as the kagome magnet has proven to be a source of both frustration and amazement. Further revealing the quantum properties of the kagome magnet ...

How ice particles promote the formation of radicals

December 7, 2018

The production of chlorofluorocarbons, which damage the ozone layer, has been banned as far as possible. However, other substances can also tear holes in the ozone layer in combination with ice particles, such as those found ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.