New method could save iconic English chalk grasslands

August 21, 2018 by Mike Addelman, University of Manchester
Credit: CC0 Public Domain

A three-year experiment by ecologists from The University of Manchester, the Centre for Ecology & Hydrology and Lancaster University has revealed how our iconic chalk grasslands—damaged by intensive farming—could be regenerated.

The study of an area on Salisbury Plain, degraded by years of cultivation, revealed how combinations of plants based on their size and shape could restore in grasslands.

Up to 40 plant species—including orchids and wildflowers- grow in a square meter of typical British chalk grassland, attracting insects and rare butterflies and birds. It also acts as an important carbon store, which helps mitigate against the effects of .

But because of , tourism and housing, Britain has lost 80% of its chalk grassland since the Second World War.

The research, funded by the Natural Environment Research Council (NERC) and published in the journal Ecology today, showed certain characteristics or traits of plants play a critical role in regeneration of soil fertility.

"Our study showed the structure and depth of plant roots, as well as plant height, could tell us how long it may take for grassland to recover from degradation caused by intensive farming", said Dr. Ellen Fry, from The University of Manchester, the lead author of the study.

"We also found that a mixture of deep and shallow roots is crucial to enable the to buffer severe drought, which is becoming increasingly common with climate change.

"The key to restoration is to ensure that the soil microbial community and nutrient and water use are restored and protected against climate change, as well as the plant species.

"If, at least during early stages of restoration, are sown based on their traits, we argue that restoration of functions such as water and could occur as quickly as between 20 and 30 years."

The study showed that plants less than about 10cm tall were best for soil quality, and that deep tap root systems are also essential for boosting the health of soil.

In contrast, taller plants, even though they grow quicker, are poorly adapted to the hardships chalk imposes, particularly because they are likely to have higher requirements for nutrients and water.

Dr. Fry added: "Deep tap roots are crucial for withstanding drought conditions and maintaining nutrient cycling. However, bushy fibrous root systems, like those seen in many grasses, are more important for high rates of nutrient cycling and linking with the microbial community.

"Simply weeding out plants which are too dominant is also highly likely to help reinstate a well-functioning and resilient ecosystem.

"Of course, if factors such as the use of pesticides, overgrazing and the impact of tourism and housing still continue to be a factor, our chalk grasslands will still be under threat. I hope that will one day be reversed."

Professor Richard Bardgett, one of the co-authors of the study, said: "These results are important because they suggest that we can design plant communities, based on knowledge about how they affect soil, to accelerate the recovery of degraded soils."

Professor James Bullock, from the Centre for Ecology & Hydrology, added: "Habitat restoration is at the heart of attempts to reverse biodiversity losses, but our study also shows how we might use restoration to make ecological systems more resilient to climate change and other threats."

Explore further: Heatwave and climate change having negative impact on our soil, say experts

More information: Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland. Ecology. DOI: 10.1002/ecy.2437

Related Stories

Droughts mean fewer flowers for bees

April 11, 2018

Bees could be at risk from climate change because more frequent droughts could cause plants to produce fewer flowers, new research shows.

Mix up plant species to keep soil healthy

July 28, 2016

When it comes to keeping our soil healthy, maintaining plant species diversity is key, according to new research published this week in the journal Ecology Letters.   

Predicting plant-soil feedbacks from plant traits

August 26, 2016

In nature, plants cannot grow without soil biota like fungi and bacteria. Successful plants are able to harness positive, growth-promoting soil organisms, while avoiding the negative effects of others. Which plant traits ...

Deep roots in plants driven by soil hydrology

September 18, 2017

Searching for water, some tree roots probe hundreds of feet deep and many trees send roots through cracks in rocks, according to a new study led by a Rutgers University-New Brunswick professor.

Recommended for you

Semimetals are high conductors

March 18, 2019

Researchers in China and at UC Davis have measured high conductivity in very thin layers of niobium arsenide, a type of material called a Weyl semimetal. The material has about three times the conductivity of copper at room ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.