Fruit flies and electrons: Researchers use physics to predict crowd behavior

August 30, 2018 by Linda B. Glaser, Cornell University

Electrons whizzing around each other and humans crammed together at a political rally don't seem to have much in common, but researchers at Cornell are connecting the dots.

They've developed a highly accurate mathematical approach to predict the behavior of crowds of living creatures, using Nobel Prize-winning methods originally developed to study large collections of quantum mechanically interacting electrons. The implications for the study of human behavior are profound, according to the researchers.

For example, by using publicly available video data of crowds in public spaces, their approach could predict how people would distribute themselves under extreme crowding. By measuring density fluctuations using a smartphone app, the approach could describe the current behavioral state or mood of a , providing an early warning system for crowds shifting toward dangerous behavior.

Tomas Arias, professor of physics, is lead author of "Density-Functional Fluctuation Theory of Crowds," which published Aug. 30 in Nature Communications. Co-authors include Itai Cohen, professor of physics; and Yunus A. Kinkhabwala, a doctoral student in the field of engineering.

Interactions among individuals in a crowd can be complex and difficult to quantify mathematically; the large number of actors in a crowd results in a complex mathematical problem. The researchers sought to predict the behavior of crowds by using simple measurements of density to infer underlying interactions and to use those interactions to predict new behaviors.

To achieve this, they applied mathematical concepts and approaches from density-functional theory (DFT), a branch of many-body physics developed for quantum mechanical systems, to the behavior of crowds.

"This is one of the all-too-rare cases – particularly where living systems are involved – where the theory preceded the experiments, and the experiments, in precise mathematical detail, completely confirmed the theory," said Arias.

Nobel Prize-winning theoretical methods originally developed for quantum systems, allow researchers to extract how individuals in crowds feel about different locations in the environment and each other, simply by observing how the number at each location changes with time. Credit: Yunus Kinkhabwala/Cornell University

To test their theory, the researchers created a model system using walking fruit flies (Drosophila melanogaster). They first demonstrated a mathematical way to extract functions that quantify how much the flies like different locations in their environment – the "vexation" function – and how much they mind crowding together – the "frustration" function based on the details of how the population densities change as the flies more around.

They then showed that by mixing and matching this information with observations of a single fly in an entirely new environment, they could accurately predict, before any observations, how a of flies would distribute themselves in that new environment. They also tracked changes in the overall behavior of the crowd – i.e., its "mood" – by tracking evolution of the social preference "frustration" function.

While were "a convenient, and ethical, first test system," Arias said, the of a crowd at a political rally would provide a human example of DFT theory. Individuals will try to find the best location to stand – typically closest to the stage – while avoiding overcrowded areas. When new and better locations become available, individuals are likely to move toward them.

To develop a mathematically predictive theory, the researchers associated a number – the vexation function – with the intrinsic desirability of each location; the lowest value would be at the ideal location, closest to the stage. The frustration function accounts for the undesirability of crowding effects, and a behavioral rule accounts for the tendency of individuals to look for better locations.

"The remarkable mathematical discovery," Arias said, "is that precise values for vexation and frustration can be obtained instantly and automatically, simply by observing changes in crowding as the crowd mills around, without the need for any kind of survey to ask people in the crowd how they feel about different locations or crowding together."

By varying the social circumstances in their fly experiments – such as changing the ratio of male and female, or inducing hunger and thirst – and monitoring the frustration values of the crowd, the researchers showed they can detect changes in the "mood" of the crowd. The DFT approach, therefore, not only predicts crowd behaviors under new circumstances, but also can be used to quickly and automatically detect changes in social behaviors.

Another application, using cell-phone and census data, could analyze political or economic drivers and population pressures to describe and predict large-scale population flows, such as mass migrations. "The resulting predictions of migration during acute events would enable better planning by all levels of government officials, from local municipalities to international bodies, with the potential to save millions of human lives," note the researchers.

Other contributors included J. Felipe Méndez-Valderrama, professor of physics, University of Los Andes, Bogota, Colombia; and Jeffrey Silver, senior analyst at Metron Inc.

Explore further: Rush hour metro crowd governed by people's eagerness to go home

More information: J. Felipe Méndez-Valderrama et al, Density-functional fluctuation theory of crowds, Nature Communications (2018). DOI: 10.1038/s41467-018-05750-z

Related Stories

Can you trust your gut on a crowd's mood?

January 19, 2016

There is good news for frequent public speakers. New research shows that individuals have the ability to quickly and accurately identify a crowd's general emotion as focused or distracted, suggesting that we can trust our ...

Predicting human crowds with statistical physics

February 27, 2015

For the first time researchers have directly measured a general law of how pedestrians interact in a crowd. This law can be used to create realistic crowds in virtual reality games and to make public spaces safer.

Recommended for you

Understanding the building blocks for an electronic brain

October 22, 2018

Computer bits are binary, with a value of zero or one. By contrast, neurons in the brain can have many internal states, depending on the input that they receive. This allows the brain to process information in a more energy-efficient ...

Researchers study interactions in molecules using AI

October 19, 2018

Researchers from the University of Luxembourg, Technische Universität Berlin, and the Fritz Haber Institute of the Max Planck Society have combined machine learning and quantum mechanics to predict the dynamics and atomic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.