A fractional micro-macro model for crowds of pedestrians based on fractional mean field games

September 13, 2016, Chinese Association of Automation

From a very young age, we're warned against shouting "Fire!" in a crowded theater. The possibility of inciting mass panic presents an obvious moral problem. But for researchers, the situation also presents an interesting mathematical problem: How do large crowds of people behave in emergency situations? While many have turned to classical physics and calculus for the answer, a recent study shows that a branch of mathematics called fractional calculus may offer a more realistic picture of crowd dynamics.

An intuitive way of modeling crowds is to think of each person as an individual particle. This approach allows researchers to use the familiar language of Newtonian physics and differential and integral calculus to describe how people behave when clustered together. On the micro scale, individual people can be assigned velocities and trajectories as they wade through the cluster to find the closest or most convenient exit. And on the macro scale, researchers can talk about how the density or concentration of people varies over time.

Although useful in teasing out some of the simpler drivers of crowd behavior, the problem with this model is that people are much more complex than bouncing particles. We have unique thoughts and feelings that influence how we behave in large groups. Someone can choose to let us go ahead of them at a concert or completely block our path. And, mathematically speaking, these paths typically don't conform to the smooth trajectories handled by traditional calculus.

This is where fractional calculus comes in. A generalized form of traditional integral calculus, fractional calculus, comes preinstalled with a way to account for long-range interactions among particles or people. Each object in a fractional order model is given a memory that persists much longer than the short-lived interactions among particles. In other words, people do more than bounce off one another as they make their way toward an exit. They remember past interactions and negotiate to carve out the best route, often in highly complex, zigzag patterns. Fractional calculus therefore provides a much more realistic picture of crowd behavior.

Researchers show that a branch of mathematics called fractional calculus may offer a more realistic picture of crowd dynamics. Credit: Chinese Association of Automation

Researchers modeled people as unique, cost-minimizing agents who navigate cooperatively with one another or competitively against each other, depending on the circumstances. Simulations showed that a crowd in a confined area tends to spread out and fill the space much faster in the fractional framework than in the traditional framework. This finding is in line with how people actually behave in crowded situations. Similarly, in an emergency exit scenario involving six people, researchers saw that pedestrians interacted with one another to reach a consensus before splitting up toward the exit.

Further comparison with real-world data is needed to understand the limitations of this new approach. But by offering researchers more freedom to define what motivates individual people in crowds, fractional calculus may be able to improve how firefighters and police officers handle disasters and emergencies.

Explore further: Calculus I factors women out of STEM degrees

More information: DOI: 10.1109/JAS.2016.7508801

Related Stories

Calculus I factors women out of STEM degrees

July 13, 2016

It's no secret that Calculus I is a major hurdle in the quest for a science degree. But, according to a new paper by Colorado State University researchers, the class is far more likely to discourage women than men from continuing ...

Predicting human crowds with statistical physics

February 27, 2015

For the first time researchers have directly measured a general law of how pedestrians interact in a crowd. This law can be used to create realistic crowds in virtual reality games and to make public spaces safer.

Markers of diet and behaviour in chimpanzee dental calculus

October 19, 2015

Researchers from the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, have identified new information about chimpanzee diets and diet-related behaviours, based on the record of plant remains preserved ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.