Surprising similarity between stripy black holes and high-temperature superconductors

July 23, 2018 by Erik Arends, Leiden Institute of Physics
Credit: Leiden Institute of Physics

Scientists don't understand how some materials become superconducting at relatively high temperatures. Leiden physicists have now found a surprising connection with auxiliary black holes. It enables researchers to apply knowledge of black holes to the mystery of high-temperature superconductivity. The new study is published in Nature Physics.

Superconductivity, discovered in Leiden in 1911, is exploited for many modern applications, such as MRI scanners and particle accelerators. These are based on the phenomenon whereby electric currents flow without resistance at temperatures close to absolute zero. Unfortunately, continuous cooling requires lots of energy, so physicists all over the world are looking for a way to make superconducting materials that operate at higher temperatures.

All relatively high-temperature superconductors now known are based on so-called Mott insulators. These form when electrons are stuck in their crystal lattice nodes, exactly one per node. They turn into superconductors after extra electrons are injected. Researchers don't understand why this happens on a fundamental level. Knowing this could enable even higher-temperature superconductors that are cheaper to keep sufficiently cool.

As the superconductor is formed, the imparity between the number of electrons and the number of available nodes within the crystal lattice causes a stripy pattern, much like the moving Moiré patterns seen on TV when an old-fashioned computer screen is filmed. But why? This is a key question in understanding Mott insulators.

Physicists are looking for the answer in an unexpected direction—they hypothesize that the dodgy electrons in high-temperature behave in some ways similarly to auxiliary . Leiden physicists Alexander Krikun, Koenraad Schalm and Jan Zaanen together with Tomas Andrade from the University of Barcelona have now found the same stripy pattern in a similar discrepancy between auxiliary 'wavy' black holes and a . This confirms the hypothesis and means that knowledge about black holes can apply to better understanding .

Explore further: The relationship between charge density waves and superconductivity? It's complicated

More information: Tomas Andrade, Alexander Krikun , Koenraad Schalm & Jan Zaanen, 'Doping the holographic Mott insulator', Nature Physics. arxiv.org/abs/1710.05791

Related Stories

Melting of frozen electrons visualized

September 20, 2016

For the first time, physicists have visualized the 'melting' of electrons inside a special class of insulators that allows electrons to move freely; the process turns the insulator into a metal and possibly later into a superconductor. ...

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.