Robots are coming to the seafood industry. Here's why

July 12, 2018 by Allie Nicodemo, Northeastern University
Northeastern professor Taskin Padir, far left, found that seafood processing plants in New Bedford were enthusiastic about bringing in robots. Credit: Matthew Modoono/Northeastern University

New England is known for being an excellent source of lobster and other seafood. But while fishing is done locally, much of the processing is outsourced to other countries. A lack of local manpower means scallops caught off the coast of Massachusetts might travel to China or India for processing before they appear on your plate at a restaurant in Boston.

Northeastern professor Taskin Padir is hoping to change that. He was selected to lead a new project to bring collaborative robots developed at the university into processing at America's busiest fishing port, located in New Bedford, Massachusetts. The goal, he said, is to increase production and efficiency, keep workers safe, and stimulate local job growth.

"We want to be able to process more locally so that we can generate more jobs and import less," said Padir, an associate professor of electrical and computer engineering.

Padir envisions that the robots will first be tasked with testing the quality of fish. Workers now pick up fish and decide whether it meets food quality standards, feeling for just the right amount of squishiness. Padir's lab at Northeastern has been developing algorithms for a robotic hand called Sawyer, which could be programmed to identify the ideal fish texture and softness with the goal of helping workers process more fish faster.

Padir visited several processing plants in New Bedford to understand the challenges and opportunities within the industry and found that company owners were enthusiastic about bringing in robots.

"We welcome the idea of bringing automation to our processing plant," said John Roberts, director of operations at channel fish processing. "It's often difficult to find employees to work under the conditions we need to maintain in order to keep the fish fresh."

Seafood processing plants are inherently harsh environments for humans, Padir said. The factories are kept cold to keep fish fresh. There's often slushy water and ice coating the floors, making them slippery. And some of the tasks, such as cutting and portioning fish, are dangerous. These factors limit the number of people interested in working at processing plants.

Operations can also be unpredictable. For example, Padir said seafood companies often can't recruit enough workers to handle the influx of orders they receive over the holidays.

Adding a system of robots to the existing processing line in seafood plants could double or even triple the production, Padir said. This would allow both small and large plants to reduce imports and complete more processing work locally.

The project, called Collaborative Robotics to Foster Innovation in Seafood Handling, or FISH, was selected to receive funding from Advanced Robotics for Manufacturing, a national consortium dedicated to improving the workforce with robotics. The project, said a representative from Advanced Robotics for Manufacturing, will begin when all agreements are in place.

Padir said that the robots and humans will work collaboratively, with robots performing much of the inspection and handling and humans completing the more complicated tasks, such as trimming left-over skin patches or bones. Eventually, he said, robots could be developed to handle dangerous duties such as cutting fish.

"It would be very hard for a to do the whole process from end-to-end," Padir said. "But through meaningful collaboration, we can introduce robots and potentially double-up the volume of the seafood that will be processed. That means more revenue for the company and more jobs for U.S. workers."

Explore further: Valkyrie robot meets the public

Related Stories

Valkyrie robot meets the public

June 6, 2016

Valkyrie landed at Northeastern on Wednesday, marking the first time that the 6-foot-2-inch, 275-pound humanoid robot has interacted with the public.

Researchers study human movement to build better robots

November 7, 2017

Draw a figure eight in the air. It might feel like one swift movement. But in fact, the velocity of your hand and arm likely varies, traveling faster through the straight parts and slowing down during the curves.

Seafood-rich diet may help couples get pregnant faster

May 23, 2018

Couples who eat more seafood tend to have sexual intercourse more often and get pregnant faster than other couples trying to conceive, according to a new study published in the Endocrine Society's Journal of Clinical Endocrinology ...

NASA counting on humanoid robots in deep space exploration

January 26, 2016

As humanity moves forward with space exploration, we should prepare for risky and extremely hazardous endeavors such as manned missions to Mars and asteroids. Having fully operational robotic help ready to assist in every ...

Recommended for you

A novel approach of improving battery performance

September 18, 2018

New technological developments by UNIST researchers promise to significantly boost the performance of lithium metal batteries in promising research for the next-generation of rechargeable batteries. The study also validates ...

Germany rolls out world's first hydrogen train

September 17, 2018

Germany on Monday rolled out the world's first hydrogen-powered train, signalling the start of a push to challenge the might of polluting diesel trains with costlier but more eco-friendly technology.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.