Oil biodegradation inhibited in deep-sea sediments

July 19, 2018, Pennsylvania State University
The Deepwater Horizon burning in 2010. Credit: US Coast Guard

Degradation rates of oil were slower in the dark and cold waters of the depths of the Gulf of Mexico than at surface conditions, according to an international team of geoscientists trying to understand where the oil went during the Deepwater Horizon oil spill.

"There's no real precedent for the Deepwater Horizon since most previous big spills were in shallow, coastal waters," said Uyen Nguyen, a doctoral student in biogeochemistry at Penn State. "No one really knew how long it would take oil to biodegrade in the where it's cold, dark, and under high pressure—factors that slow down microbial metabolism."

Naturally occurring bacteria and microbes consumed an estimated 12 to 25 percent of the 210 million gallons of oil released during the Deepwater Horizon disaster. This occurred through biodegradation.

The study used high-pressure laboratories at the Hamburg University of Technology in Germany to simulate deep-sea conditions present during spills. The researchers placed Gulf of Mexico sediment or water samples and oil in reactors with varying pressures and temperatures for 18 days to react. Afterwards, they sent the samples to Penn State to analyze how specific compounds of oil, such as and n-alkanes, degraded as a result of naturally occurring bacteria. They report their results in a recent issue of PLOS ONE.

High pressure reactors at the Hamburg University of Technology (TUHH) simulated deep-sea conditions of biodegradation. Results from the experiments were shipped to Penn State University for chemical analysis. Credit: C-IMAGE Consortium

Additional findings from the study estimate that complete degradation of n-alkanes, a major compound found in oil, would take 42 days in sediments deeper than 3280 feet and 19 days at shallow sites, under optimal nutrient conditions. The researchers found that oil biodegradation rates decreased by 4 percent for every 328 feet of increase in water depth.

"A major oil spill such as the one caused by the Deepwater Horizon accident cannot be perceived as a local problem, since it potentially has an effect over decades and across borders and continents," said Gabriela Valladares-Juarez, a research scientist from the Hamburg University of Technology.

While the Deepwater Horizon oil spill occurred at a depth of greater than 5,000 feet, deep oil drilling continues in the Gulf of Mexico. Oil biodegradation at a depth 5,000 feet or greater is reduced by 60 percent compared to that at surface temperature and pressure. This current expansion of oil exploration to deeper waters compounds the risk of spills because the effect of pressure on biodegradation will be more pronounced in the future.

"The understanding of oil biodegradation under deep-sea conditions is of high relevance, since due to more and expanded deep-sea drilling in the future more oil spills will occur in the deep sea, and is the only mechanism so far that removes the oil in the deep sea," said Rudolf Müller, Hamburg University of Technology. "Therefore, the understanding of this process is crucial for the understanding and prediction of what happens to the oil in the case of a future in the deep sea. This research contributes to this understanding."

Explore further: Oil-eating microbes are challenged in the Arctic

Related Stories

Oil-eating microbes are challenged in the Arctic

February 21, 2018

New economic developments in the Arctic, such as trans-Arctic shipping and oil exploitation, will bring along unprecedented risks of marine oil spills. The world is therefore calling for a thorough understanding of the resilience ...

Sub-zero waters a barrier to oil spill recovery

May 24, 2017

Sub-zero temperatures in the deep waters of the North Atlantic would significantly hamper the ability of oil-eating bacteria to help the ocean recover from a major oil spill, according to new research.

Five years after BP spill, industry touts ability to respond

April 7, 2015

An oil consortium says an oil spill in the Gulf of Mexico today can be cleaned up far faster than five years ago when BP's Macondo well blew out 45 miles off the coast of Louisiana, spawning the nation's worst offshore oil ...

Recommended for you

A damming trend

December 14, 2018

Hundreds of dams are being proposed for Mekong River basin in Southeast Asia. The negative social and environmental consequences—affecting everything from food security to the environment—greatly outweigh the positive ...

Data from Kilauea suggests the eruption was unprecedented

December 14, 2018

A very large team of researchers from multiple institutions in the U.S. has concluded that the Kilauea volcanic eruption that occurred over this past summer represented an unprecedented volcanic event. In their paper published ...

The long dry: global water supplies are shrinking

December 13, 2018

A global study has found a paradox: our water supplies are shrinking at the same time as climate change is generating more intense rain. And the culprit is the drying of soils, say researchers, pointing to a world where drought-like ...

Death near the shoreline, not life on land

December 13, 2018

Our understanding of when the very first animals started living on land is helped by identifying trace fossils—the tracks and trails left by ancient animals—in sedimentary rocks that were deposited on the continents.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.