What's in an egg? Oocyte factors that can reprogram adult cells

July 3, 2018, Mary Ann Liebert, Inc
Credit: Mary Ann Liebert, Inc., publishers

The promise of generating truly pluripotent stem cells from terminally differentiated adult cell types continues to captivate scientists who envision great potential for therapeutic interventions. The two primary methods involve either the replacement of oocyte nuclei with adult somatic cell nuclei—a process known as somatic cell nuclear transfer (SCNT)—or the introduction, typically by viruses, of a cocktail of specific transcription factors to create induced pluripotent stem cells (iPSCs). SCNT is more efficient and less variable but technically more demanding, and the availability of high-quality oocytes is limited. Thus, the potential to combine these approaches by identifying the crucial factors in oocytes that mediate SCNT efficiency is reviewed in a new article published in Stem Cells and Development.

In "Somatic Cell Reprogramming Informed by the Oocyte," Elena González-Muñoz, Ph.D., Andalusian Center for Nanomedicine and Biotechnology, Málaga, Spain, and Jose B. Cibelli, Ph.D., DVM, Michigan State University, categorically describe the known and potential oocyte-specific factors that can drive or assist reprogramming by modulating the epigenetic landscape. They sort these factors into maternal histones and their chaperones, histone deacetylases and acetyltransferases, histone methylation modifiers, DNA methylation modifiers, transcription factors, miRNAs, and lncRNAs. Specific epigenetic modifications known to influence pluripotency are discussed along with their disruption by small molecules.

Collectively, the authors provide a logical framework for understanding how oocyte factors can de-differentiate committed and a platform for studying and discovering optimal combinations to increase the efficiency, reproducibility, and safety of this technique.

Explore further: Histones may hold the key to the generation of totipotent stem cells

More information: Elena Gonzalez-Munoz et al, Somatic Cell Reprogramming Informed by the Oocyte, Stem Cells and Development (2018). DOI: 10.1089/scd.2018.0066

Related Stories

Rethinking reprogramming: A new way to make stem cells

April 7, 2011

A paper published by Cell Press in the April 8th issue of the journal Cell Stem Cell reveals a new and more efficient method for reprogramming adult mouse and human cells into an embryonic stem cell-like state and could lead ...

Recommended for you

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

Race at the edge of the sun: Ions are faster than atoms

March 26, 2019

Scientists at the University of Göttingen, the Institut d'Astrophysique in Paris and the Istituto Ricerche Solari Locarno have observed that ions move faster than atoms in the gas streams of a solar prominence. The results ...

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.