Novel molecular designs unlock therapeutic potential of nicotine receptors

June 8, 2018, University of Bristol
Modified cytisine molecules (fuchsia) bound to the brain's key nicotine receptor. Credit: Dr Sofia Oliveira, University of Bristol

Seven million people die each year from smoking related diseases, according to the World Health Organisation, with the annual death toll expected to rise to eight million by 2030.

Despite a WHO target to phase out tobacco usage by 2040, smoking remains one of the biggest global public health problems, with low to middle income countries accounting for around 80 per cent of the world's estimated 1.1 billion smokers.

To address this major health threat, there is a challenge to find smoking cessation therapies that are both low cost (and so widely-accessible) and that support smokers effectively to manage and then conquer their addiction.

Currently, there are two drugs which offer a related approach to smoking cessation. The first of these is cytisine, a natural product extracted from laburnum seeds and marketed as Tabex, that has been used for smoking cessation in central and eastern Europe for over 50 years. The other is varenicline (a related to cytisine) that is available worldwide as Chantix or Champix. Both drugs work by selective stimulation of the brain's nicotine receptor in such a way that the smoker receives some but not all the reward of smoking so that, over time, they can manage withdrawal to eradicate their tobacco addiction.

However, both varenicline and cytisine activate other receptors in the brain that may be linked to various side effects. As a result, identifying more selective drugs that offer smokers an improved therapy would encourage greater end-user compliance and lead to increased quit rates.

Researchers from the University of Bristol, in partnership with colleagues from the universities of Bath, Oxford Brookes and Milan, have been examining the chemistry and pharmacology of one of these drugs, namely cytisine (Tabex). Specifically, the team of synthetic and computational chemists, and pharmacologists and neuroscientists have looked at robust ways to target and modify specific parts of cytisine's chemical structure. They do this starting with cytisine itself, which offers a number of significant advantages, and this has led to new molecules that show higher selectivity for those key nicotine-activated receptors while still providing the necessary partial stimulation (reward) required by smokers to cope with cravings.

Using computational simulation methods developed with the aid of Bristol's high performance computing facilities, the researchers have also unpacked how the modified chemical structure determines the biological profiles of these new cytisine variants to provide the enhanced differentiation that they have observed. Longer term, and with further research, this work has the potential to produce a new smoking cessation therapy based on cytisine that, through better compliance, may lead to higher and more sustained quit rates.

Tim Gallagher, Professor of Organic Chemistry at the University of Bristol, said: "We had previously made some of these molecules by other routes but the poor efficiency of that chemistry seriously limited what we could do. We can now readily generate our molecules which offer more effective therapies, as well as biological probes that we and others will use to understand some of the fundamental questions associated with receptor activation."

Adrian Mulholland, Professor of Chemistry at the University of Bristol, said: "This work shows how computational simulation and experiment working together can identify potential new smoking cessation aids and can make a real difference. This also opens new ways of tackling these receptors very specifically, and understanding how they function."

Susan Wonnacott, Professor of Neuroscience at the University of Bath, added: "Manipulating the biological activity of ligands to give greater specificity for high affinity nicotine receptors is a key requirement for effective cessation. Having the chemistry to achieve this, and the computational modelling to understand the mechanism, paves the way for the generation of novel therapeutics by rational drug design."

This research had additional support from Achieve Life Sciences (ALS), a pharmaceutical company specialising in cytisine as a aid.

"This is a first but very significant step towards targeted therapeutics and we have built a fantastic multidisciplinary team to pursue this problem," added Professor Gallagher. "We are now working on new and emerging aspects of this project, and that will include exploring, in partnership with ALS, the full potential of these ligands as therapeutic agents."

Explore further: Natural quit smoking remedy more effective than nicotine replacement

More information: Hugo Rego Campello et al. Unlocking Nicotinic Selectivity via Direct C‒H Functionalization of (−)-Cytisine, Chem (2018). DOI: 10.1016/j.chempr.2018.05.007

Related Stories

Quitting smoking: Licensed medications are effective

May 30, 2013

Nicotine replacement therapy and other licensed drugs can help people quit smoking, according to a new systematic review published in The Cochrane Library. The study, which is an overview of previous Cochrane reviews, supports ...

Soviet-era pill from Bulgaria helps smokers quit

September 28, 2011

(AP) -- A pill developed in Bulgaria during the Soviet era shows promise for helping millions of smokers cheaply and safely kick the habit, the first big study of it shows.

Recommended for you

Targeting 'hidden pocket' for treatment of stroke and seizure

January 19, 2019

The ideal drug is one that only affects the exact cells and neurons it is designed to treat, without unwanted side effects. This concept is especially important when treating the delicate and complex human brain. Now, scientists ...

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

Using bacteria to create a water filter that kills bacteria

January 18, 2019

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy ...

Hand-knitted molecules

January 18, 2019

Molecules are usually formed in reaction vessels or laboratory flasks. An Empa research team has now succeeded in producing molecules between two microscopically small, movable gold tips – in a sense as a "hand-knitted" ...

This computer program makes pharma patents airtight

January 17, 2019

Routes to making life-saving medications and other pharmaceutical compounds are among the most carefully protected trade secrets in global industry. Building on recent work programming computers to identify synthetic pathways ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.