Devastating plant virus is revealed in atomic detail

June 18, 2018, University of Leeds
Image shows the sturcture of a geminivirus. Credit: University of Leeds

The complex 3-D structure of one of the world's most lethal families of plant viruses has been revealed in unprecedented detail by scientists at the UK's University of Leeds.

Geminiviruses are responsible for diseases affecting crops such as cassava and maize in Africa, cotton in the Indian subcontinent and tomatoes across Europe.

Being able to see its structrure in great detail is vital as it could help virologists and molecular biologists better understand its lifecyle, and develop new ways to stop the spread of these viruses and the diseases they cause.

The viruses are named for their curious shape. Viruses usually have a protective shell of protein, or a capsid, that acts to protect their genetic material in the environment. In most viruses, this capsid is roughly spherical, but the geminivirus has a 'twinned' capsid formed by two roughly spherical shapes fused together.

The molecular details of how this twinned capsid is achieved—and how it assembles in cells or expands to release the genome and start a new infection—has remained a mystery, despite the risk posed by the virus to agricultural economies worldwide.

Researchers at the University's Astbury Centre for Structural Molecular Biology used cryo electron microscopy techniques to study geminivirus structure at undprecedented resolution, and in the process have begun to untangle its assembly mechanisms.

Published in Nature Communications, the study reveals how the capsid of the geminivirus is built and how its single-stranded DNA genome is packaged.

"In many other types of virus, the spherical capsids are built from a single protein that adopts three different shapes, which then fit together to form a closed container," explains Professor Neil Ranson, who led the research team at the Astbury Centre. "But geminivurses are not spherical, so must be using a different set of rules. Using cryo-EM, we've been able to show that they do use three different shapes of the same protein, but with a completely different rulebook for assembly."

One of the difficulties in studying geminviruses is growing them in sufficient quantities for structural studies. The team studied a type of geminvirus called ageratum yellow vein virus, which was produced in tobacco plants under carefully controlled conditions by researchers at the John Innes Centre in Norwich.

The team at the John Innes Centre, led by Dr. Keith Saunders and Professor George Lomonossoff, also developed a method for assembling geminivirus particles within plants in the absence of infection. This highlighted the role played by the single-stranded DNA in particle formation.

"Having worked for many years to understand the diseases geminiviruses cause, it was very satisfying to apply modern genetic methods to generate these geminate structures," said Dr. Saunders.

"We've now been able to analyse the role that different conformations of the coat protein play in particle assembly, and we can potentially make other viruses and virus-like particles that might otherwise be impossible to isolate from natural infections."

"Using our 'next generation' we have modelled the position of the majority of the atoms in the ", said Dr. Emma Hesketh, a post-doctoral researcher in the Astbury Centre, who carried out the work to create the images of the structure.

"This technology is often referred to as the resolution revolution, and it's enabled us to get this fascinating—and very beautiful—insight into these structures. By using these techniques to understand the structure and the life cycle of these , we can come a step closer to understanding how to interrupt that life cycle, and inhibit the spread of plant disease."

Explore further: Scientists reveal cryo-electron microscopy structure of a herpesvirus capsid at 3.1 Angstrom

More information: Emma L. Hesketh et al, The 3.3 Å structure of a plant geminivirus using cryo-EM, Nature Communications (2018). DOI: 10.1038/s41467-018-04793-6

Related Stories

Transplant-damaging virus comes into focus

April 26, 2018

Researchers from the University of Leeds have revealed the structure of a virus which affects kidney and bone marrow transplant patients in near-atomic levels of detail for the first time.

Brick by brick—assembly of the measles virus

May 2, 2018

Researchers have been able to capture images of measles viruses as they emerge from infected cells, using state of the art cryo-electron tomography techniques. The new images will help with a greater understanding of measles ...

Recommended for you

Targeting 'hidden pocket' for treatment of stroke and seizure

January 19, 2019

The ideal drug is one that only affects the exact cells and neurons it is designed to treat, without unwanted side effects. This concept is especially important when treating the delicate and complex human brain. Now, scientists ...

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

Using bacteria to create a water filter that kills bacteria

January 18, 2019

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy ...

Hand-knitted molecules

January 18, 2019

Molecules are usually formed in reaction vessels or laboratory flasks. An Empa research team has now succeeded in producing molecules between two microscopically small, movable gold tips – in a sense as a "hand-knitted" ...

This computer program makes pharma patents airtight

January 17, 2019

Routes to making life-saving medications and other pharmaceutical compounds are among the most carefully protected trade secrets in global industry. Building on recent work programming computers to identify synthetic pathways ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.