New data-mining technique offers most-vivid picture of Martian mineralogy

June 6, 2018, Carnegie Institution for Science
A panorama of Gale crater on Mars taken from Vera Rubin ridge. Credit: NASA/JPL-Caltech/MSSS

A team of scientists led by Carnegie's Shaunna Morrison and including Bob Hazen have revealed the mineralogy of Mars at an unprecedented scale, which will help them understand the planet's geologic history and habitability. Their findings are published in two American Mineralogist papers.

Minerals form from novel combinations of elements. These combinations can be facilitated by geological activity, including volcanoes and water-rock interactions. Understanding the mineralogy of another planet, such as Mars, allows scientists to backtrack and understand the forces that shaped their formation in that location.

An instrument on NASA's Mars Curiosity Rover called the Chemistry and Mineralogy Instrument, or CheMin, is the first tool of its kind ever to operate on another planet. But there are limitations to how much it can tell scientists about the Red Planet's minerals—how they formed and what they can illuminate about Martian history.

But Morrison found a way to glean even more information from the CheMin data, information which paints a detailed picture of the minerals the rover encountered on Mars.

CheMin is able to discern what types of minerals exist on Mars and in what proportions they are found. But until this latest work from Morrison, scientists didn't have the calibration capabilities to measure the precise composition or crystal chemistry of those minerals from CheMin data alone. For example, CheMin told Earth-bound scientists that certain types of feldspar exist on Mars, but it did not provide the level of detail that can give mineralogists vital clues about the conditions under the feldspars formed.

A mosaic of NASA's Mars Curiosity Rover at Rocknest, the spot in Gale Crater where the mission's first scoop sampling took place. Four scoop scars can be seen in front of the rover. Credit: NASA/JPL-Caltech/MSSS

Crystals, by definition, have a long-range repetitive structure. The smallest unit of the geometry of this crystal lattice is called the unit cell, comprised of repeating atomic units. Morrison realized that because the unit cell dimensions for minerals found in the 13 samples CheMin took of the soils, sandstones, and formations of Mar's Gale Crater are known, she could use them as a key to unlock more information about the minerals sampled by CheMin.

"I scoured the literature, gathering and analyzing thousands of measurements of both compositions and unit cell dimensions and then determined a mathematical connection between them," Morrison explained. "Once this relationship was established, it could be used to glean much more detail about the minerals in the Martian samples taken by CheMin."

For example, CheMin was able to measure that Mars' Gale Crater contains the minerals feldspar and olivine. Using Morrison's connection between unit cells and compositions, the team was able to determine how the composition of feldspar varies between the different sampling locations, which can offer information about its igneous origins. In addition, the percentage of magnesium found in olivine samples range from 52 to 72 percent, which when compared with Martian meteorites may offer information about aqueous alteration of the material.

"Thanks to Shaunna's creative approach, we have improved CheMin's resolution by an order of magnitude," Hazen explained. "The result is the most vivid picture yet of the mineralogy of another planet."

Explore further: First X-ray diffraction measurements on Mars

Related Stories

First X-ray diffraction measurements on Mars

December 8, 2014

In 2012 the Mars Science Laboratory landed in the fascinating Gale crater. The Gale crater is of such great interest because of the 5.5 km high mountain of layered materials in the middle. This material tells an intricate ...

UA student finds 'Hawaiian beach' sand on Mars

October 24, 2013

(Phys.org) —The world's largest database of minerals, developed and housed at the UA, enables NASA to identify the minerals that make up the soil on Mars. As a member of the science team on NASA's Curiosity rover currently ...

New views of Mars from sediment mineralogy

December 10, 2013

The first detailed examination of clay mineralogy in its original setting on Mars is offering new insights on the planet's past habitability, research led by Planetary Science Institute Senior Scientist David T. Vaniman has ...

Curiosity's drill hole and location are picture perfect

October 5, 2015

On Tuesday, Sept. 29, NASA's Curiosity Mars rover drilled its eighth hole on Mars, and its fifth since reaching Mount Sharp one year ago. The drilling of the hole 2.6-inches (65 millimeters) deep in a rock the team labeled ...

Recommended for you

First science with ALMA's highest-frequency capabilities

August 17, 2018

The ALMA telescope in Chile has transformed how we see the universe, showing us otherwise invisible parts of the cosmos. This array of incredibly precise antennas studies a comparatively high-frequency sliver of radio light: ...

Magnetized inflow accreting to center of Milky Way galaxy

August 17, 2018

Are magnetic fields an important guiding force for gas accreting to a supermassive black hole (SMBH) like the one that our Milky Way galaxy hosts? The role of magnetic fields in gas accretion is little understood, and trying ...

Six things about Opportunity's recovery efforts

August 17, 2018

NASA's Opportunity rover has been silent since June 10, when a planet-encircling dust storm cut off solar power for the nearly-15-year-old rover. Now that scientists think the global dust storm is "decaying"—meaning more ...

Another way for stellar-mass black holes to grow larger

August 17, 2018

A trio of researchers with The University of Hong Kong, Academia Sinica Institute of Astronomy and Astrophysics in Taiwan and Northwestern University in the U.S., has come up with an alternative theory to explain how some ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.