Curiosity rover has seen much in first two years on Mars

August 8, 2014, Planetary Science Institute
Credit: NASA

NASA's Curiosity rover marks two Earth years on Mars this week, and Planetary Science Institute researchers are actively pursuing new knowledge of our neighboring planet.

The Mars Science Laboratory rover, which arrived on Mars slightly more than one Martian year ago, has offered scientists detailed analysis of the planet's geology and mineralogy, as well as clues to past habitability.

The first surface science results from the mission provided the most definitive evidence yet of an ancient stream flow on Mars, according to research led by PSI Senior Scientist Rebecca M.E. Williams, Curiosity science co-Investigator. "This is the first confirmation of sedimentary conglomerates on another planet," Williams said.

"The team's result of river transported sediment is one of the highlights of the mission to date. This was followed up with data from Yellowknife Bay detailing evidence for a lake that was a habitable environment." Williams said.

The first detailed examination of clay mineralogy in its original setting on Mars is offering new insights on the planet's past habitability, research led by PSI Senior Scientist David T. Vaniman has found. Vaniman is the deputy principal investigator for the CheMin (Chemical and Mineralogy) instrument aboard the rover.

The samples tested were collected at Yellowknife Bay in Gale Crater on Mars. The rover's CheMin X-Ray Diffraction and Fluorescence (CheMin XRD/XRF) instrument analyzed the samples.

"The in situ X-ray diffraction results reveal the presence of smectite, a type of clay mineral typical of soils and sediments that have not been deeply buried, heated, or otherwise altered," Vaniman said. "The X-Ray diffraction data from the mudstone are also important for what they do not detect – clay minerals such as chlorite or illite that would have formed in strongly alkaline or hydrothermal fluids."

"I'm excited about the frequency with which we are seeing conglomerates along our traverse," said PSI Senior Scientist R. Aileen Yingst. "Not only do these layers indicate flowing water, we see different characteristics in various conglomerate layers, meaning that we can begin to interpret how that flowing water changed and evolved through time.

In addition to working with Williams on studying Martian conglomerates, Yingst is deputy principal investigator for the mission's Mars Hand Lens Imager (MAHLI). MAHLI provides Earthbound scientists with close-up views of minerals, textures and structures in Martian rocks and the surface layer of rocky debris and dust.

"It is an accomplishment every time we take a rover 'selfie.' I worked so hard to administer the first selfie through the conservative process of accepting and executing a first-time observation. Now taking a selfie is not necessarily easy, but an accepted, relatively standard operation," Yingst said. "If there's one thing that I can say I helped give to history, it's the image of the rover looking back at us."

"I'm so proud of how beautifully this camera has performed on Mars," Yingst said. "MAHLI has provided us with the clearest idea so far of Martian sedimentary textures, and things will only get more exciting when we get to Mt. Sharp."

PSI scientists Bruce Barraclough, Steven Bender, Nina Lanza, Robert Tokar, and Vaniman are all members of the ChemCam instrument team on Curiosity. In the two Earth years of operations on Mars the ChemCam instrument has collected thousands of chemical analyses by laser induced plasma emission, at ranges up to seven meters. These results have provided a "microprobe" view of rock, soil, and individual mineral compositions. Among the many science results from ChemCam are discoveries of a common abundance of alkaline feldspars and rarer but significant manganese-oxide coatings on some rocks.

The PSI scientists look forward to new discoveries as Curiosity continues it trek on the Martian surface.

Explore further: New views of Mars from sediment mineralogy

Related Stories

New views of Mars from sediment mineralogy

December 10, 2013

The first detailed examination of clay mineralogy in its original setting on Mars is offering new insights on the planet's past habitability, research led by Planetary Science Institute Senior Scientist David T. Vaniman has ...

Imager sends ultra high-res photo from Mars

October 9, 2013

( —An instrument aboard NASA's Curiosity rover has sent back to scientists on Earth an ultra high-resolution image of a penny the rover carried to Mars.

SHERLOC to micro-map Mars minerals and carbon rings

August 1, 2014

( —An ultraviolet-light instrument on the robotic arm of NASA's Mars 2020 rover will use two types of ultraviolet-light spectroscopy, plus a versatile camera, to help meet the mission's ambitious goals, including ...

Recommended for you

Solar-powered rover approaching 5,000th Martian dawn

February 16, 2018

The sun will rise on NASA's solar-powered Mars rover Opportunity for the 5,000th time on Saturday, sending rays of energy to a golf-cart-size robotic field geologist that continues to provide revelations about the Red Planet.

Supermassive black holes are outgrowing their galaxies

February 15, 2018

The growth of the biggest black holes in the Universe is outrunning the rate of formation of stars in the galaxies they inhabit, according to two new studies using data from NASA's Chandra X-ray Observatory and other telescopes ...

Hubble sees Neptune's mysterious shrinking storm

February 15, 2018

Three billion miles away on the farthest known major planet in our solar system, an ominous, dark storm - once big enough to stretch across the Atlantic Ocean from Boston to Portugal - is shrinking out of existence as seen ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.