NASA rover's first soil studies help fingerprint Martian minerals

NASA rover's first soil studies help fingerprint Martian minerals
This graphic shows results of the first analysis of Martian soil by the Chemistry and Mineralogy (CheMin) experiment on NASA's Curiosity rover. The image reveals the presence of crystalline feldspar, pyroxenes and olivine mixed with some amorphous (non-crystalline) material. The soil sample, taken from a wind-blown deposit within Gale Crater, where the rover landed, is similar to volcanic soils in Hawaii. The colors in the graphic represent the intensity of the X-rays, with red being the most intense. Image credit: NASA/JPL-Caltech/Ames

NASA's Mars rover Curiosity has completed initial experiments showing the mineralogy of Martian soil is similar to weathered basaltic soils of volcanic origin in Hawaii.

The minerals were identified in the first sample of ingested recently by the rover. Curiosity used its Chemistry and Mineralogy instrument (CheMin) to obtain the results, which are filling gaps and adding confidence to earlier estimates of the mineralogical makeup of the dust and fine soil widespread on the Red Planet.

"We had many previous inferences and discussions about the mineralogy of Martian soil," said David Blake of NASA Ames Research Center in Moffett Field, Calif., who is the principal investigator for CheMin. "Our quantitative results provide refined and in some cases new identifications of the minerals in this first X-ray diffraction analysis on ."

The identification of minerals in rocks and soil is crucial for the mission's goal to assess past environmental conditions. Each mineral records the conditions under which it formed. The chemical composition of a rock provides only ambiguous mineralogical information, as in the textbook example of the minerals diamond and graphite, which have the same chemical composition, but strikingly different structures and properties.

CheMin uses X-ray diffraction, the standard practice for geologists on Earth using much larger laboratory instruments. This method provides more accurate identifications of minerals than any method previously used on Mars. X-ray diffraction reads minerals' internal structure by recording how their crystals distinctively interact with X-rays. Innovations from Ames led to an X-ray diffraction instrument compact enough to fit inside the rover.

These NASA technological advances have resulted in other applications on Earth, including compact and portable X-ray diffraction equipment for oil and gas exploration, analysis of archaeological objects and screening of counterfeit pharmaceuticals, among other uses.

"Our team is elated with these first results from our instrument," said Blake. "They heighten our anticipation for future CheMin analyses in the months and miles ahead for Curiosity."

The specific sample for CheMin's first analysis was soil Curiosity scooped up at a patch of dust and sand that the team named Rocknest. The sample was processed through a sieve to exclude particles larger than 0.006 inch (150 micrometers), roughly the width of a human hair. The sample has at least two components: dust distributed globally in dust storms and fine sand originating more locally. Unlike conglomerate rocks Curiosity investigated a few weeks ago, which are several billion years old and indicative of flowing water, the soil material CheMin has analyzed is more representative of modern processes on Mars.

"Much of Mars is covered with dust, and we had an incomplete understanding of its mineralogy," said David Bish, CheMin co-investigator with Indiana University in Bloomington. "We now know it is mineralogically similar to basaltic material, with significant amounts of feldspar, pyroxene and olivine, which was not unexpected. Roughly half the soil is non-crystalline material, such as volcanic glass or products from weathering of the glass. "

Bish said, "So far, the materials Curiosity has analyzed are consistent with our initial ideas of the deposits in Gale Crater recording a transition through time from a wet to dry environment. The ancient rocks, such as the conglomerates, suggest flowing water, while the minerals in the younger soil are consistent with limited interaction with water."

During the two-year prime mission of the Mars Science Laboratory Project, researchers are using Curiosity's 10 instruments to investigate whether areas in Gale Crater ever offered environmental conditions favorable for microbial life.


Explore further

Mars soil sample delivered for analysis inside rover

Provided by NASA
Citation: NASA rover's first soil studies help fingerprint Martian minerals (2012, October 30) retrieved 24 May 2019 from https://phys.org/news/2012-10-nasa-rover-soil-fingerprint-martian.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

HTK
Oct 30, 2012
Why land at Gale crater at all?

Doesn't crater mean that the land had been vapourized by a meteor some millions of years ago?

So why would there be any signs of life?

Oct 30, 2012
Gale crater was a good choice due to the fact that is very old (~ 3.8 BY) so it is a great time capsule of how Mars has developed since the Late Heavy Bombardment era of the Solar System when life was just taking root on Earth.

Oct 31, 2012
Why land at Gale crater at all?
Doesn't crater mean that the land had been vapourized by a meteor some millions of years ago?
So why would there be any signs of life?


These are great question's. I am surprised so many people would put down a genuine question of intrest.

1) like Jerry said, the crater is 3.5 to 3.8 billion years old. So many geological event could have happend since the crater formation. The list of craters that are measure in the millions of year on earth are numerous, and the geological time scale of super continent formation is also measured in the millions of years) So a lot could have happend. In gales case the origin on the giant hill in its center is unique and interesting.

2) 'Life' [Earth-bound-Biology] needs water, carbon and energy .Mars has it all. The signes of life curiosity will be looking for will lightly show up not visually like fossil or markings(would be cool!) but as distinct and unique chemical signatures in the materials examined.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more