Bioinspired material mimics color changes of living organisms

June 27, 2018, Nagoya University
Color change in a picture of a morning glory created with the composite color material due to light irradiation and the background color. Credit: John Wiley & Sons, Inc.

A range of creatures, including chameleons, octopuses and frogs, can change color in response to changes in the environment. Some insights into the mechanisms behind this at the anatomical, cellular and molecular levels have been obtained. However, much work is still required to obtain sufficient understanding of this phenomenon and to translate it into useful artificial applications.

As reported in the journal Small, researchers at Nagoya University's Department of Molecular Design and Engineering developed a material containing dyes and crystals that can change the colors and patterns it displays depending on the background color used within it and its exposure to visible or ultraviolet light.

The team was inspired to develop this material by findings obtained in the skin of certain frogs, in which different layers of cells with different properties combine to enable remarkable color changes.

Each component of this novel material plays a key role in its color properties. For example, the dyes contribute their inherent colors to the material's appearance, which can be adjusted by mixing them to different extents. These dyes also include those that change color upon exposure to light.

Electron micrographs of spherical colloidal crystals composed of fine silica particles with a particle diameter of 250 nm: (a) image showing one spherical colloidal crystal, (b) surface image of the spherical colloidal crystal, (c) a sectional image of the spherical colloidal crystal, and (d) spherical colloidal crystals maintained between the mesh sizes of 125 μm and 150 μm. Credit: John Wiley & Sons, Inc.

Spherical crystals were also introduced into the system, which, rather than influencing the color through their inherent pigmentation, affect it through microscopic structures that can directly interfere with . Finally, a black pigment and different background colors were employed to alter the colors the other components of the system display.

"We examined the influences of the different components in the system, such as by changing the size of the crystals, switching the background from white to black, or performing exposure to visible or ," says corresponding author Yukikazu Takeoka. "We found these changes resulted in different colors being displayed across the material, resembling the way in which some organisms can change color in response to various factors in their environment."

a) This is a photograph of the spherical colloidal crystals containing 0.20 wt% carbon black (CB). The size of the fine silica particles ranges from 200 to 300 nm, and 11 different sizes were used. b) This is a picture of a weevil drawn using spherical colloidal crystals prepared using monodispersed silica particles with various particle sizes and CB. The surroundings of the weevils are drawn with spherical colloidal crystals that do not contain CB and change with the color of the background. Credit: John Wiley & Sons, Inc.
"This is an exciting stage in this field of study, as we are increasingly able to adapt the color-changing mechanisms that some animals use to artificial devices," study first author Miki Sakai adds. "If these artificial -changing can equal or surpass the vibrant displays that some animals such as octopuses and frogs make, it could have exciting applications in the development of new technologies."

Explore further: Bird feathers inspire researchers to produce vibrant new colors

More information: Miki Sakai et al, Bioinspired Color Materials Combining Structural, Dye, and Background Colors, Small (2018). DOI: 10.1002/smll.201800817

Related Stories

Peacock colors inspire 'greener' way to dye clothes

February 1, 2017

"Fast fashion" might be cheap, but its high environmental cost from dyes polluting the water near factories has been well documented. To help stem the tide of dyes from entering streams and rivers, scientists report in the ...

Printable, colorful camouflage with polymers

February 7, 2018

In nature, colors can serve as a form of communication, but they can also hide animals and plants, camouflaging them from sight. Researchers now report in ACS Applied Materials & Interfaces that they have developed polymers ...

Research comes through with flying colors

April 25, 2017

Like a chameleon changing colors to blend into the environment, Lawrence Livermore researchers have created a technique to change the color of assembled nanoparticles with an electrical stimulant.

Squid skin could be the solution to camouflage material

February 22, 2018

Cephalopods—which include octopuses, squid, and cuttlefish—are masters of disguise. They can camouflage to precisely match their surroundings in a matter of seconds, and no scientist has quite been able to replicate the ...

Recommended for you

Solving mazes with single-molecule DNA navigators

November 16, 2018

The field of intelligent nanorobotics is based on the great promise of molecular devices with information processing capabilities. In a new study that supports the trend of DNA-based information carriers, scientists have ...

A way to make batteries almost any shape desired

November 16, 2018

A team of researchers from Korea Advanced Institute of Science and Technology, Harvard University and Korea Research Institute of Chemical Technology has developed a way to make batteries in almost any shape that can be imagined. ...

'Smart skin' simplifies spotting strain in structures

November 15, 2018

Thanks to one peculiar characteristic of carbon nanotubes, engineers will soon be able to measure the accumulated strain in an airplane, a bridge or a pipeline – or just about anything – over the entire surface or down ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.