World's fastest water heater—100,000 degrees in under a 10th of a picosecond

May 14, 2018, Deutsches Elektronen-Synchrotron

Scientists have used a powerful X-ray laser to heat water from room temperature to 100,000 degrees Celsius in less than a 10th of a picosecond (millionth of a millionth of a second). The experimental setup, which can be seen as the world's fastest water heater, produced an exotic state of water from which researchers hope to learn more about the peculiar characteristics of water. The observations also have practical use for the probing biological and many other samples with X-ray lasers. The team of Carl Caleman from the Center for Free-Electron Laser Science (CFEL) at DESY and Uppsala University (Sweden) reports its findings in the journal Proceedings of the National Academy of Sciences (PNAS).

The researchers used the X-ray free-electron Linac Coherent Light Source LCLS at the SLAC National Accelerator Laboratory in the U.S. to shoot extremely intense and ultra-short flashes of X-rays at a jet of . "It is not the usual way to boil your water," said Caleman. "Normally, when you heat water, the molecules will just be shaken stronger and stronger." On the molecular level, heat is motion—the hotter, the faster the motion of the molecules. This can be achieved, for example, via heat transfer from a stove, or more directly with microwaves that make the water molecules swing back and forth ever faster in step with the electromagnetic field.

"Our heating is fundamentally different," explained Caleman. "The energetic X-rays punch electrons out of the , thereby destroying the balance of electric charges. So, suddenly the atoms feel a strong repulsive force and start to move violently." In less than 75 femtoseconds, that's 75 millionths of a billionth of a second or 0.000 000 000 000 075 seconds, the water goes through a phase transition from liquid to plasma. A plasma is a state of matter where the electrons have been removed from the atoms, leading to a sort of electrically charged gas.

"But while the water transforms from liquid to plasma, it still remains at the density of liquid water, as the atoms didn't have time to move significantly yet," said co-author Olof Jönsson from Uppsala University. This exotic state of matter is nothing that can be found naturally on Earth. "It has similar characteristics as some plasmas in the sun and the gas giant Jupiter, but has a lower density. Meanwhile, it is hotter than Earth's core."

Simulation of the movement of the water molecules and atoms in the first 70 femtoseconds of the intense X-ray pulse. The experimental data were used to validate the theoretical modelling of the dynamics. Credit: Carl Caleman, CFEL/DESY and Uppsala University

The scientists used their measurements to validate simulations of the process. Together, the measurements and simulations allow to study this exotic state of water in order to learn more about water's general properties. "Water really is an odd liquid, and if it weren't for its peculiar characteristics, many things on Earth wouldn't be as they are, particularly life," Jönsson emphasised. Water displays many anomalies, including its density, heat capacity and thermal conductivity. It it these anomalies that will be investigated within the future Centre for Water Science (CWS) planned at DESY, and the obtained results are of great importance for the acivities there.

Apart from its fundamental significance, the study also has immediate practical significance. X-ray lasers are often used to investigate the atomic structure of tiny samples. "It is important for any experiment involving liquids at X-ray lasers," said co-author Kenneth Beyerlein from CFEL. "In fact, any sample that you put into the X-ray beam will be destroyed in the way that we observed. If you analyse anything that is not a crystal, you have to consider this."

The measurements show almost no structural changes in the water up to 25 femtoseconds after the X-ray pulse starts to hit it. But at 75 femtoseconds, changes are already evident. "The study gives us a better understanding of what we do to different samples," explained co-author Nicusor Timneanu from Uppsala University, one of the key scientist developing the theoretical model used. "Its observations are also important to consider for the development of techniques to image single molecules or other tiny particles with X-ray lasers."

Explore further: X-ray scientists create tiny, super-thin sheets of flowing water that shimmer like soap bubbles

More information: Ultrafast non-thermal heating of water initiated by an X-ray Free-Electron Laser; Kenneth R. Beyerlein, H. Olof Jönsson, Roberto Alonso-Mori , Andrew Aquila, Saša Bajt, Anton Barty, Richard Bean, Jason E. Koglin, Marc Messerschmidt, Davide Ragazzon, Dimosthenis Sokaras, Garth J. Williams, Stefan Hau-Riege, Sébastien Boutet, Henry N. Chapman, Nicusor Tîmneanu, and Carl Caleman; Proceedings of the National Academy of Sciences, 2018; http://www.pnas.org/cgi/doi/10.1073/pnas.1711220115

Related Stories

The slipperiness of ice explained

May 9, 2018

Winter sports such as skiing, speed skating, figure skating, and curling require the slippery surfaces of ice and snow. While the fact that the ice surface is slippery is widely acknowledged, it is far from being completely ...

Scientists watch diamond turn into graphite

December 8, 2017

In a surprising achievement, a team of scientists has turned diamond into graphite, using an X-ray laser. What may seem undesirable at first glance, is a decisive step forward in understanding the fundamental behaviour of ...

Recommended for you

Bursting bubbles launch bacteria from water to air

November 15, 2018

Wherever there's water, there's bound to be bubbles floating at the surface. From standing puddles, lakes, and streams, to swimming pools, hot tubs, public fountains, and toilets, bubbles are ubiquitous, indoors and out.

Terahertz laser pulses amplify optical phonons in solids

November 15, 2018

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons ...

Designer emulsions

November 15, 2018

ETH material researchers are developing a method with which they can coat droplets with controlled interfacial composition and coverage on demand in an emulsion in order to stabilise them. In doing so they are fulfilling ...

Quantum science turns social

November 15, 2018

Researchers in a lab at Aarhus University have developed a versatile remote gaming interface that allowed external experts as well as hundreds of citizen scientists all over the world to optimize a quantum gas experiment ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

betterexists
not rated yet May 14, 2018
Use This Technology at Red Sea. All of the Countries of the Middle East will Have Ponds instead of Deserts !
Salt water of the Sea to Vapor to Cloud to Fresh Water !
gculpex
5 / 5 (1) May 15, 2018
Use This Technology at Red Sea. All of the Countries of the Middle East will Have Ponds instead of Deserts !
Salt water of the Sea to Vapor to Cloud to Fresh Water !

Unfortunately, the laser can't handle that much water and would be very expensive per drop.
It's more in line for plasma research.
antialias_physorg
1 / 5 (1) May 15, 2018
Lasers (especially the high energy ones) have atrociously low power efficiencies. You'd be running a nuclear powerplant just to boil a cup of water using a laser (well, that's a bit of hyperbole, but you get my drift)
savvys84
not rated yet May 26, 2018
I would be good if they could use this technology to save the planet from its fresh water crisis

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.