Diamond 'spin-off' tech could lead to low-cost medical imaging and drug discovery tools

May 18, 2018, Lawrence Berkeley National Laboratory
A microscopic image of diamond particles with nitrogen-vacancy defects. These samples, which exhibit a truncated octahedral shape, were used in experiments that sought new ways to tune and control an electronic property known as spin polarization. The scale bar at lower right is 200 microns (millionths of an inch). To the human eye, the pinkish diamonds resemble fine red sand. Credit: Berkeley Lab, UC Berkeley

It may sound contradictory, but diamonds are the key to a new technique that could provide a very-low-cost alternative to multimillion-dollar medical imaging and drug-discovery devices.

An international team led by scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley discovered how to exploit defects in nanoscale and microscale and potentially enhance the sensitivity of magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) systems while eliminating the need for their costly and bulky superconducting magnets.

"This has been a longstanding unsolved problem in our field, and we were able to find a way to overcome it and to show that the solution is very simple," said Ashok Ajoy, a postdoctoral researcher in the Materials Sciences Division at Berkeley Lab, and the Department of Chemistry at UC Berkeley, who served as the lead author of the study. "No one has ever done this before. The mechanism that we discovered is completely new."

MRI machines are employed to locate cancerous tumors and aid in the development of treatment plans, while NMR machines are used to examine the atomic-scale structure and chemistry of drug compounds and other molecules.

The new technique, described in the May 18 edition of the Science Advances journal, could lead to the direct use of these tiny diamonds for rapid and enhanced biological imaging. Researchers will also seek to transfer this special tuning, known as , to a harmless fluid such as water, and to inject the fluid into a patient for faster MRI scans. The high surface area of the tiny particles is key in this effort, researchers noted.

Enhancing this spin in the electrons of the diamonds' atoms can be likened to aligning some compass needles pointing in many different directions to the same direction. These "hyperpolarized" spins could provide a sharper contrast for imaging than conventional superconducting magnets.

"This important discovery in the hyperpolarization of nano- and microscale diamonds has enormous scientific and commercial implications," Ajoy said, as some of the most advanced MRI and NMR machines can be incredibly expensive and out of reach for some hospitals and research institutions.

The device in this diagram was used to study diamonds subjected to green laser light and low-field microwave energy. After they were pulsed with laser light, the diamond samples were quickly hoisted up to a high-field superconducting magnet to measure a property known as 'hyperpolarization.' Credit: Berkeley Lab, UC Berkeley

"This could help expand the market for MRI and NMR," he said, and could also potentially shrink the devices from room-sized to benchtop-sized, which "has been the dream from the start." Ajoy is a member of the Alex Pines research lab at UC Berkeley—Pines is a senior faculty scientist in Berkeley Lab's Materials Sciences Division, and a pioneer in the development of NMR as a research tool.

Scientists had struggled to overcome a problem in properly orienting the diamonds to achieve a more uniform spin polarization—and this problem was even more pronounced in collections of very small diamonds that presented a chaotic jumble of orientations. Earlier efforts, for example, had explored whether drilling tiny features into diamond samples could aid in controlling their spin polarization.

The tunable spin properties in diamonds with defects known as nitrogen vacancies—in which nitrogen atoms take the place of carbon atoms in the crystal structure of diamonds—have also been studied for potential use in quantum computing. In those applications, scientists seek to control the spin polarization of electrons as a way to transmit and store information like the ones and zeros in more conventional magnetic computer data storage.

In the latest study, scientists found that by zapping a collection of microscale diamonds with green laser light, subjecting it to a weak magnetic field, and sweeping across the sample with a microwave source, they could enhance this controllable spin polarization property in the diamonds by hundreds of times compared with conventional MRI and NMR machines.

Emanuel Druga, an electrician in the UC Berkeley College of Chemistry R&D shops, devised a large measurement tool for the that proved instrumental in confirming and fine-tuning the spin polarization properties of the diamond samples. "It allowed us to debug this in about a week," Ajoy said.

The device helped researchers to home in on a good size for the diamond crystals. At first, they were using crystals that measured about 100 microns, or 100 millionths of an meter across. The tiny samples of pinkish diamonds resemble fine red sand. After testing, they found that diamonds measuring about 1 to 5 microns performed about twice as well.

The tiny diamonds can be manufactured in economical processes by converting graphite into diamond, for example.

The team of scientists has already developed a miniaturized system that uses off-the-shelf components to produce the laser light, microwave energy, and magnetic field required to produce the spin polarization in the diamond samples, and they have applied for patents on the technique and the hyperpolarization system.

"You could think of retrofitting existing NMR magnets with one of these systems," said Raffi Nazaryan, who participated in the study as an undergraduate researcher at Berkeley Lab and UC Berkeley. Prototypes of the system cost just several thousand dollars, he noted.

While the spin is short-lived, researchers said they are exploring ways to continuously polarize the samples, and are also researching how to transfer this polarization to liquids.Ajoy said, "We could potentially recycle the liquid so it flows in a closed loop, or keep injecting newly polarized liquid."

Explore further: Diamonds may be the key to future NMR/MRI technologies

More information: Ashok Ajoy et al, Orientation-independent room temperature optical 13 C hyperpolarization in powdered diamond, Science Advances (2018). DOI: 10.1126/sciadv.aar5492

Related Stories

Diamonds may be the key to future NMR/MRI technologies

December 16, 2015

Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have demonstrated that diamonds may hold the key to the future for ...

Diamonds show promise for spintronic devices

January 29, 2018

Conventional electronics rely on controlling electric charge. Recently, researchers have been exploring the potential for a new technology, called spintronics, that relies on detecting and controlling a particle's spin. This ...

Designing diamonds for medical imaging technologies

March 19, 2018

Japanese researchers have optimized the design of laboratory-grown, synthetic diamonds. This brings the new technology one step closer to enhancing biosensing applications, such as magnetic brain imaging. The advantages of ...

Diamonds coupled using quantum physics

April 10, 2017

Atomic defects in diamonds can be used as quantum memories. Researchers at TU Wien for the first time have succeeded in coupling the defects in various diamonds using quantum physics.

Recommended for you

How community structure affects the resilience of a network

June 22, 2018

Network theory is a method for analyzing the connections between nodes in a system. One of the most compelling aspects of network theory is that discoveries related to one field, such as cellular biology, can be abstracted ...

The pho­to­elec­tric ef­fect in stereo

June 22, 2018

In the photoelectric effect, a photon ejects an electron from a material. Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. From their results they can deduce ...

Water can be very dead, electrically speaking

June 21, 2018

In a study published in Science this week, the researchers describe the dielectric properties of water that is only a few molecules thick. Such water was previously predicted to exhibit a reduced electric response but it ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.