Why bioelectrodes for energy conversion are not stable

Why bioelectrodes for energy conversion are not stable
Felipe Conzuelo and Fangyuan Zhao have investigated why artificial photosynthesis systems are unstable. Credit: RUB, Kramer

Researchers at the Ruhr-Universität Bochum have discovered why bioelectrodes containing the photosynthesis protein complex photosystem I are not stable in the long term. Such electrodes could be useful for converting light energy into chemical energy in an environmentally friendly way. However, the proteins, which are stable in nature, are not functional in semi-artificial systems in the long term because reactive molecules are formed that damage the photosystem I.

The team around Dr Fangyuan Zhao, Dr Felipe Conzuelo and Prof Dr Wolfgang Schuhmann from the Centre for Electrochemical Sciences together with colleagues from the Bochum Chair of Plant Biochemistry describes the results in the journal Nature Communications.

Promising technology: Bioelectrodes

Felipe Conzuelo describes the background of the research project: "Society faces the great challenge of having to find more sustainable ways of converting and storing energy." Here it is important to understand the processes that currently still limit the lifetime of promising techniques. "Because this is the only way to develop stable solutions in the future," Fangyuan Zhao adds.

Promising techniques include electrodes in which the photosystem I is embedded in an osmium-containing polymer. When the photosynthetic protein is activated by light, it can separate positive and negative charges very efficiently. This charge gradient can serve as a source of energy, so to speak, and drive further processes.

Reactive oxygen species limit lifetime

"The photosystem I not only works efficiently, but also occurs in nature in large quantities, which makes it interesting for semi-artificial systems for conversion", explains Felipe Conzuelo. However, if the bioelectrode operates in an oxygen-containing environment, it suffers damage in the long term.

The scientists from Bochum used so-called scanning electrochemical microscopy to observe the processes on the electrode surface. On this surface, the photosystem I is embedded in an osmium-containing polymer. They observed which molecules are formed on the electrode surface when it is exposed to light. To do this, they exposed the system to different oxygen concentrations.

It was found that irradiation with light produced and hydrogen peroxide, which can damage the photosystem I in the long term. "Based on our results, it seems advisable to design bioelectrodes with photosystem I so that they can operate in an oxygen-free environment", Conzuelo concludes.


Explore further

Bio-based solar cell: Researchers generate electricity rather than biomass with photosynthetic proteins

More information: Fangyuan Zhao et al. Light-induced formation of partially reduced oxygen species limits the lifetime of photosystem 1-based biocathodes, Nature Communications (2018). DOI: 10.1038/s41467-018-04433-z
Journal information: Nature Communications

Citation: Why bioelectrodes for energy conversion are not stable (2018, May 25) retrieved 15 October 2019 from https://phys.org/news/2018-05-bioelectrodes-energy-conversion-stable.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
71 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more