Surface engineering gets the red light

April 25, 2018, King Abdullah University of Science and Technology
Surface engineering gets the red light
Passivating the surface of perovskite nanocrystals with IDA molecules improves their stability and their optical and electrical properties, making them useful for optoelectronic devices. Credit: KAUST

Perovskite particles could improve the performance of solar cells and light-emitting diodes via a simple process to stabilize the nanocrystal surface.

A method for chemically stabilizing optical nanocrystals, without degrading their electrical properties, has been developed by scientists at KAUST.

Halide perovskites are in an exciting class of materials for optoelectronics and photovoltaics. These materials efficiently absorb visible light, possess long charge-carrier diffusion lengths and are easy and cheap to produce. The performance of optical devices can also be improved by incorporating nanometer-scale particles, which have far superior light-emitting and -absorbing properties than the bulk material from which they are derived. So it is unsurprising that scientists are keen to combine these two approaches. The challenge is that tiny perovskite particles aren't always chemically stable, and their atomic crystal structure is difficult to control.

Attaching molecules, referred to as ligands, can stabilize a nanocrystal. But this so-called passivation can form an electrically insulating shell around the particle that inhibits their effectiveness in electronic devices.

Now, Osman Bakr's group, and co-workers from KAUST and ShanghaiTech University, has created halide perovskite nanocrystals made from cesium-lead-iodide passivated by 2,2′-iminodibenzoic acid (IDA) ligands. They show that this provides the necessary chemical stability while remaining useful for optoelectronics. And the passivation was simple: just adding IDA powder into the nanocrystal solution and using a centrifuge to remove any excess.

The team chose IDA because it is a bidentate ligand, meaning that it bonds to the nanocrystal at two sites. "The conventional ligands used in these applications, such as oleic acid, are dynamic on the surface of the perovskite nanocrystals and easily come loose," says Jun Pan, the first author on the paper. "That's why we apply a double carboxylic group to strongly bind on the surface, which also stabilizes the perovskite crystal phase at room temperature."

Pan and his team compared the optical properties of both the passivated and unpassivated samples and observed that the treatment improved the photoluminescent quantum yield—a measure of how many photons are emitted for every photon absorbed—from 80 percent to over 95 percent. And while the intensity of light emitted from the unpassivated nanocrystals had dropped significantly five days later, the IDA-treated samples were still emitting light at 90 percent of their initial level 15 days later.

The team demonstrated that their stabilized halide perovskite nanocrystals were suitable for optoelectronic applications by using them to build . The red-light generating devices again outperformed the unpassivated control device in terms of maximum luminance and luminous power efficiency.

"The next step is to realize more stable perovskite structures and to create an LED with performance above 10 percent based on ," says Pan.

Explore further: Novel capping strategy improves stability of perovskite nanocrystals

More information: Jun Pan et al. Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes, Journal of the American Chemical Society (2017). DOI: 10.1021/jacs.7b10647

Related Stories

Quantum-emitting answer might lie in the solution

November 28, 2017

Tapping into the quantum properties of photons for optoelectronics requires highly efficient light sources. Lead trihalide perovskite nanocrystals exhibit a number of properties that make them promising candidates as light ...

Thinner photodiode with higher stability and performance

November 30, 2017

A research team of at DGIST has unveiled a new high-performance photodiode that reduces thickness to one-sixth of conventional silicon photodiodes. According to the researchers, they worked to develop a technology to increase ...

Researchers invent light-emitting nanoantennas

February 19, 2018

Scientists from ITMO University have developed effective nanoscale light sources based on halide perovskite. Such nanosources are based on subwavelength nanoparticles serving both as emitters and nanoantennas and allow enhancing ...

Recommended for you

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Revealing the rules behind virus scaffold construction

March 19, 2019

A team of researchers including Northwestern Engineering faculty has expanded the understanding of how virus shells self-assemble, an important step toward developing techniques that use viruses as vehicles to deliver targeted ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.