Water purification breakthrough uses sunlight and 'hydrogels'

April 3, 2018, University of Texas at Austin
Water purification breakthrough uses sunlight and 'hydrogels'

According to the United Nations, 30,000 people die each week from the consumption and use of unsanitary water. Although the vast majority of these fatalities occur in developing nations, the U.S. is no stranger to unanticipated water shortages, especially after hurricanes, tropical storms and other natural disasters that can disrupt supplies without warning.

Led by Guihua Yu, associate professor of materials science and mechanical engineering at The University of Texas at Austin, a research team in UT Austin's Cockrell School of Engineering has developed a cost-effective and compact technology using combined gel-polymer hybrid materials. Possessing both hydrophilic (attraction to ) qualities and semiconducting (solar-adsorbing) properties, these "hydrogels" (networks of polymer chains known for their high water absorbency) enable the production of clean, safe drinking water from any source, whether it's from the oceans or contaminated supplies.

The findings were published in the most recent issue of the journal Nature Nanotechnology.

"We have essentially rewritten the entire approach to conventional solar water evaporation," Yu said. The Texas Engineering researchers have developed a new hydrogel-based solar vapor generator that uses ambient solar energy to power the evaporation of water for effective desalination. Existing solar steaming technologies used to treat saltwater involve a very costly process that relies on optical instruments to concentrate sunlight. The UT Austin team developed nanostructured gels that require far less energy, only needing naturally occurring levels of ambient sunlight to run while also being capable of significantly increasing the volume of water that can be evaporated.

"Water desalination through distillation is a common method for mass production of freshwater. However, current distillation technologies, such as multi-stage flash and multi-effect distillation, require significant infrastructures and are quite energy-intensive," said Fei Zhao, a postdoctoral researcher working under Yu's supervision. "Solar energy, as the most sustainable heat source to potentially power distillation, is widely considered to be a great alternative for ."

Short video footage showing how UT Engineers' New Desalinization Technology Works. How does UT's New Desalination Technology work? Water is placed in a glass jar with a nanostructured hydrogel evaporator floating on top, placed in direct sunlight. Water vapor is generated from the hydrogel's surface, after which it is captured by a transparent condenser where the purified water is stored. This process can also be used to purify any polluted water. Credit: Guihua Yu

The hydrogels allow for water vapor to be generated under direct sunlight and then pumped to a condenser for freshwater delivery. The desalinating properties of these hydrogels were even tested on from the salt-rich Dead Sea and passed with flying colors. Using water samples from one of the saltiest bodies of water on Earth, UT engineers were able to reduce salinity from Dead Sea samples significantly after putting them through the hydrogel process. In fact, they achieved levels that met accepted as outlined by the World Health Organization and the U.S. Environmental Protection Agency.

"Our outdoor tests showed daily distilled water production up to 25 liters per square meter, enough for household needs and even disaster areas," said Yu. "Better still, the hydrogels can easily be retrofitted to replace the core components in most existing solar desalination systems, thereby eliminating the need for a complete overhaul of desalinations systems already in use."

Because salt is one of the most difficult substances to separate from water, researchers have also successfully demonstrated the hydrogels' capacity for filtering out a number of other common contaminants found in water that are considered unsafe for consumption.

Yu believes the technology can be commercialized and is preparing his research team in anticipation of requests from industry to conduct scalability tests.

The potential impact of this technology could be far-reaching, as global demand for fresh, clean water outpaces existing natural supplies.

A patent application has been filed, and Yu has teamed up with the university's Office of Technology Commercialization to assist with the licensing and commercialization for this novel class of hydrogels.

Explore further: Researchers pilot system using electrodialysis to produce safe drinking water

More information: Fei Zhao et al. Highly efficient solar vapour generation via hierarchically nanostructured gels, Nature Nanotechnology (2018). DOI: 10.1038/s41565-018-0097-z

Related Stories

Standalone system to produce drinking water via solar energy

February 12, 2018

Researchers from the University of Alicante's research group in applied electrochemistry and electrocatalysis have developed a standalone system for desalinating and treating water through electrodialysis. The system is directly ...

Recommended for you

Weaponizing oxygen to kill infections and disease

August 19, 2018

The life-threatening bacteria called MRSA can cripple a hospital since it spreads quickly and is resistant to treatment. But scientists report that they are now making advances in a new technique that avoids antibiotics. ...

Flexible color displays with microfluidics

August 16, 2018

A new study published on Microsystems and Nanoengineering by Kazuhiro Kobayashi and Hiroaki Onoe details the development of a flexible and reflective multicolor display system that does not require continued energy supply ...

Twisted electronics open the door to tunable 2-D materials

August 16, 2018

Two-dimensional (2-D) materials such as graphene have unique electronic, magnetic, optical, and mechanical properties that promise to drive innovation in areas from electronics to energy to materials to medicine. Columbia ...

Scientists discover why silver clusters emit light

August 16, 2018

Clusters of silver atoms captured in zeolites, a porous material with small channels and voids, have remarkable light-emitting properties. They can be used for more efficient lighting applications as a substitute for LED ...

Novel sensors could enable smarter textiles

August 16, 2018

A team of engineers at the University of Delaware is developing next-generation smart textiles by creating flexible carbon nanotube composite coatings on a wide range of fibers, including cotton, nylon and wool. Their discovery ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Apr 03, 2018
how often do they have to be replaced? Or do they?
5 / 5 (1) Apr 04, 2018
From the linked abstract it looks like this can continue working even if the 'pollutant' molecules are small (in the cited example brine).

A floating HNG sample evaporated water with a record high rate of 3.2 kg m^−2 h^−1 via 94% solar energy from 1 sun irradiation, and 18–23 litres of water per square metre of HNG was delivered daily when purifying brine water.

Though I'm sure there will be biofouling at some point as with all such methods. But with the low energy usage this seems promising.
5 / 5 (1) Apr 04, 2018
That's what I was wondering because otherwise like you, I think it's a promising idea too.

If it's something where the biofouling could simply be washed off and it reused it would make a big difference in a lot of peoples lives. If not it's going nowhere except for commercial uses at best.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.