Magma ocean may be responsible for the moon's early magnetic field

April 25, 2018 by Karin Valentine, Arizona State University
The bottom-most layer of the moon's mantle melts to form a metal-rich "basal magma ocean" that sits on top of the moon's metal core. Convection in this layer may have driven a dynamo, creating a magnetic field which would have been recorded at the surface by the cooling lunar crust, including the samples brought back by Apollo astronauts. Credit: Aaron Scheinberg

Around four billion years ago, the Moon had a magnetic field that was about as strong as Earth's magnetic field is today. How the Moon, with a much smaller core than Earth's, could have had such a strong magnetic field has been an unsolved problem in the history of the Moon's evolution.

Scientist Aaron Scheinberg of Princeton, with Krista Soderlund from the University of Texas Institute for Geophysics, and Linda Elkins-Tanton of Arizona State University, set out to determine what may have powered this early lunar . Their results and a new for how this may have happened, have been recently published in Earth and Planetary Science Letters.

A new model

Earth's magnetic protects our planet by deflecting most of the solar wind, whose charged particles would otherwise strip away the ozone that protects the Earth from harmful ultraviolet radiation.

While Earth's magnetic field is generated by the motions of its convecting liquid metal outer core, known as the dynamo, the Moon's core is too small to have produced a magnetic field of that magnitude.

So, the research team proposed a new model for how the magnetic field could have reached Earth-like levels. In this scenario, the dynamo is powered not by the Moon's small metal core, but by a heavy layer of molten (liquid) rock that sits on top of it.

In this proposed model, the bottom-most layer of the Moon's mantle melts to form a metal-rich "basal magma ocean" that sits on top of the Moon's metal core. Convection in this layer then drives the dynamo, creating a magnetic field.

"The idea of a basal magma ocean dynamo had been proposed for the early Earth's magnetic field, and we realized that this mechanism may also be important for the Moon," says co-author Soderlund.

Soderlund further explains that a partially molten layer is thought to still exist at the base of the lunar mantle today. "A strong magnetic field is easier to achieve at the Moon's surface if the dynamo operated in the mantle rather than in the core," she says, "because decreases rapidly the farther away it is from the dynamo region."

In simulations of the core dynamo of the Moon conducted by the team, they kept finding that the lower layer of the Moon's mantle was overheating and melting. Initially, they tried to focus on cases without melting that were easier to model, but eventually considered that the melting process was the key to their new model.

"Once we started thinking of that melting as a feature, instead of a bug," says Scheinberg, "the pieces started fitting together and we wondered if the melting that we saw in the models could produce a metal-rich magma ocean to power the strong early field."

A later weak magnetic field

Further along in the evolution of the Moon (around 3.56 billion years ago), there is also evidence that the strong magnetic field that existed around the Moon eventually became a weak magnetic field, one that continued until relatively recently. The team's new model may also help explain this phenomenon as well.

"Our model provides an elegant potential solution," says Scheinberg. "As the Moon cooled, the magma ocean would have solidified, while the dynamo would have continued to create the later weak field."

"We're excited by this result because it explains fundamental observations about the Moon—its early, and its subsequent weakening and then disappearance—using first-order processes already supported by other observations," adds co-author Elkins-Tanton.

Beyond providing a to build from, this research may also provide a better understanding of planetary magnetic field generation elsewhere in our solar system and beyond.

"Basal magma ocean dynamos, like the one in our model, may well have been a common occurrence in rocky planets like Earth and Mars," says Scheinberg.

Explore further: Ancient lunar dynamo may explain magnetized moon rocks

More information: Aaron L. Scheinberg et al, A basal magma ocean dynamo to explain the early lunar magnetic field, Earth and Planetary Science Letters (2018). DOI: 10.1016/j.epsl.2018.04.015

Related Stories

Ancient lunar dynamo may explain magnetized moon rocks

November 9, 2011

The presence of magnetized rocks on the surface of the moon, which has no global magnetic field, has been a mystery since the days of the Apollo program. Now a team of scientists has proposed a novel mechanism that could ...

Moon's molten, churning core likely once generated a dynamo

December 4, 2014

When the Apollo astronauts returned to Earth, they brought with them some souvenirs: rocks, pebbles, and dust from the moon's surface. These lunar samples have since been analyzed for clues to the moon's past. One outstanding ...

Swarm tracks elusive ocean magnetism

April 10, 2018

The magnetic field is arguably one of the most mysterious features of our planet. ESA's Swarm mission is continually yielding more insight into how our protective shield is generated, how it behaves and how it is changing. ...

Lunar dynamo's lifetime extended by at least 1 billion years

August 9, 2017

New evidence from ancient lunar rocks suggests that an active dynamo once churned within the molten metallic core of the moon, generating a magnetic field that lasted at least 1 billion years longer than previously thought. ...

Recommended for you

How a pair of satellites will 'weigh' water on Earth

May 22, 2018

The reason we know today just how much ice is melting in Greenland and Antarctica is because of a pair of satellites, launched in 2002 by NASA and the German Research Centre for Geosciences (GFZ). Now, they are set to be ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Mark Thomas
not rated yet Apr 25, 2018
"Basal magma ocean dynamos, like the one in our model, may well have been a common occurrence in rocky planets like Earth and Mars,"

If the moon's magnetic field were generated in its mantle then it probably would have been offset from the center of the moon. A similarly offset magnetic field exists around Uranus today. Perhaps we should send a Cassini-like orbiter and probe to take a closer look. I promise you won't be disappointed. :-)

"Uranus' magnetic field . . . is also offset from the center of the planet by one-third of the planet's radius."

https://www.jpl.n...anus.pdf

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.