The quantum states on the surface of conducting materials can strongly interact with light

March 9, 2018, Agency for Science, Technology and Research (A*STAR), Singapore
The quantum states on the surface of conducting materials can strongly interact with light
The upper and lower electron bands in a semimetal touch at places known as Dirac points. Credit: American Physical Society

An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR.

Atomically thin materials, such as graphene, derive some of their properties from the fact that electrons are confined to traveling in just two-dimensions. Similar phenomena are also seen in some three-dimensional materials, in which electrons confined to the behave very differently from those within the bulk—for example, , whose surface electrons conduct electricity even though their bulk electrons do not. Recently, another exciting class of materials has been identified: the topological semimetal.

The difference in insulator and conductor is down to the bandgap: a gap between the ranges, or bands, of energy that an electron traveling through the material can assume. In an insulator, the lower band is full of electrons and the bandgap is too large to enable a current to flow. In a semimetal, the lower band is also full but the lower and upper bands touch at some points, enabling the flow of a small current.

This lack of a full bandgap means that topological semimetals should theoretically exhibit very different properties from those of the more conventional topological insulators.

To prove this, Li-kun Shi and Justin Song from the A*STAR Institute of High Performance Computing used an 'effective Hamiltonian' approximation to show that the two-dimensional surface states in semimetals, known as Fermi arcs, possess a light–matter interaction much stronger than that found in other gapless two-dimensional systems, such as graphene.

"Typically, the bulk dominates material absorption," explains Song. "But we show that Dirac semimetals are unusual in that they possess a very optically active surface due to these peculiar Fermi arc states."

Shi and Song analyzed a proto-typical semimetal with a symmetric band structure where the electronic bands touch at two places, known as Dirac points, and predicted the strength with which incident radiation induces electron transitions from the lower band to the upper one. They found that surface absorption depends heavily on the polarization of light, being 100 to 1,000 times stronger when light is polarized perpendicular—rather than parallel—to the crystal's rotational axis. This strong anisotropy offers a way of optically investigating and probing the topological surfaces states of Dirac semimetals.

"Our goal is to identify more unconventional optics that arise due to Fermi arcs," says Song. "Topological semimetals could host unusual opto-electronic behavior that goes beyond conventional materials."

Explore further: Physicists predict previously unseen phenomena in exotic materials

More information: Li-kun Shi et al. Large optical conductivity of Dirac semimetal Fermi arc surface states, Physical Review B (2017). DOI: 10.1103/PhysRevB.96.081410

Related Stories

Neutrons reveal the wild Weyl world of semimetals

February 20, 2018

The observation of an abnormal state of matter in a two-dimensional magnetic material is the latest development in the race to harness novel electronic properties for more robust and efficient next-generation devices.

Engineering electron pathways in 2-D topological insulators

December 4, 2017

In a recent article published in Physical Review Letters a research collaborative has reported new insights into the electronic conduction and interference on 2-D topological insulators—an exotic kind of insulator that ...

Recommended for you

Pushing the extra cold frontiers of superconducting science

October 18, 2018

Measuring the properties of superconducting materials in magnetic fields at close to absolute zero temperatures is difficult, but necessary to understand their quantum properties. How cold? Lower than 0.05 Kelvin (-272°C).

The big problem of small data: A new approach

October 18, 2018

Big Data is all the rage today, but Small Data matters too! Drawing reliable conclusions from small datasets, like those from clinical trials for rare diseases or in studies of endangered species, remains one of the trickiest ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.