Nanostructures made of previously impossible material

March 9, 2018, Vienna University of Technology
Nanostructures made of previously impossible material. Credit: TU Wien

Materials scientists often seek to change the physical properties of a material by adding a certain proportion of an additional element; however, it isn't always possible to incorporate the desired quantity into the crystal structure of the material. At TU Wien, a new method has been developed to produce previously unattainable mixtures of germanium and other atoms. This results in new materials with significantly altered properties.

"Incorporating foreign into a crystal in a targeted manner to improve its properties is actually a standard method," says Sven Barth from the Institute of Materials Chemistry at TU Wien. Modern electronics are based on semiconductors with certain additives. Silicon crystals incorporated with phosphorus or boron are one such example.

Researchers have encountered difficulty incorporating germanium with other atoms. Melting the two elements and thoroughly mixing them together in liquid form and then letting them solidify does not work in this case. "This simple thermodynamic method fails, because the added atoms do not efficiently blend into the lattice system of the crystal," explains Sven Barth. "The higher the temperature, the more the atoms move inside the material. This can result in these foreign atoms precipitating out of the crystal after they have been successfully incorporated, leaving behind a very low concentration of these atoms within the crystal."

Michael Seifner (l.) and Sven Barth (r.). Credit: TU Wien

Barth's team therefore developed a new approach that links particularly rapid crystal growth to very low process temperatures. In the process, the correct quantity of the foreign atoms is continuously incorporated as the crystal grows. The crystals grow in the form of nanoscale threads or rods at considerably lower temperatures than before, in the range of just 140 to 230 degrees C. "As a result, the incorporated atoms are less mobile, the diffusion processes are slow, and most atoms stay where you want them to be," explains Barth.

Using this method, it has been possible to incorporate up to 28 percent tin and 3.5 percent gallium into germanium. This is considerably more than was previously possible by means of the conventional thermodynamic combination of these materials by a factor of 30 to 50.

This opens up new possibilities for microelectronics: "Germanium can be effectively combined with existing silicon technology, and also the addition of tin and/or gallium in such high concentrations offers extremely interesting potential applications in terms of optoelectronics," says Sven Barth. The materials would be used for infrared lasers, for photodetectors or for innovative LEDs in the infrared range, for example, since the of are significantly changed by these additives.

Explore further: Growing thin films of germanium

More information: Michael S. Seifner et al, Direct Synthesis of Hyperdoped Germanium Nanowires, ACS Nano (2018). DOI: 10.1021/acsnano.7b07248

Related Stories

Growing thin films of germanium

September 6, 2013

Researchers have developed a new technique to produce thin films of germanium crystals—key components for next-generation electronic devices such as advanced large-scale integrated circuits and flexible electronics, which ...

The game algorithm that could improve materials design

August 24, 2017

Designing advanced materials is a complex process, with many potential combinations for precisely placing atoms within a structure. But now, scientists have developed a new tool that helps determine the ideal placements - ...

Addition of tin boosts nanoparticle's photoluminescence

November 29, 2017

Researchers at the U.S. Department of Energy's Ames Laboratory have developed germanium nanoparticles with improved photoluminescence, making them potentially better materials for solar cells and imaging probes. The research ...

Harnessingthe properties of a remarkable 2-D material

August 10, 2017

Characterizing the thermal properties of crystalline molybdenum disulfide, an important two-dimensional (2-D) material, has proven challenging. Now researchers from A*STAR have developed a simple technique that could pave ...

Stretching to perfection of 2-D semiconductors

November 15, 2017

Compressing a semiconductor to bring atoms closer together or stretching it to move them farther apart can dramatically change how electricity flows and how light is emitted. Scientists found an innovative way to compress ...

Recommended for you

Smallest ever sieve separates atoms

March 20, 2018

Researchers at The University of Manchester have discovered that the naturally occurring gaps between individual layers of two-dimensional materials can be used as a sieve to separate different atoms.

Quantum bits in two dimensions

March 20, 2018

Two novel materials, each composed of a single atomic layer and the tip of a scanning tunneling microscope, are the ingredients for a novel kind of quantum dot. These extremely small nanostructures allow delicate control ...

Rubbery carbon aerogels greatly expand applications

March 19, 2018

Researchers have designed carbon aerogels that can be reversibly stretched to more than three times their original length, displaying elasticity similar to that of a rubber band. By adding reversible stretchability to aerogels' ...

Scientists have a new way to gauge the growth of nanowires

March 19, 2018

In a new study, researchers from the U.S. Department of Energy's (DOE) Argonne and Brookhaven National Laboratories observed the formation of two kinds of defects in individual nanowires, which are smaller in diameter than ...

Plasmons triggered in nanotube quantum wells

March 16, 2018

A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.