The secret to improving liquid crystal's mechanical performance

October 11, 2017, Springer

By deliberately interrupting the order of materials - by introducing different atoms in metal or nanoparticles in liquid crystals - we can induce new qualities. For example, metallic alloys like duralumin, which is composed of 95% of aluminium and 5% copper, are usually harder than the pure metals. This is due to an elastic interaction between the defects of the crystal, called dislocations, and the solute atoms, which form what are referred to as Cottrell clouds around them. In such clouds, the concentration of solute atoms is higher than the mean concentration in the material.

In a paper published in EPJ E, Patrick Oswald from the École Normale Supérieure of Lyon, France, and Lubor Lejček from the Czech Academy of Sciences have now theoretically calculated the static and dynamical properties of the Cottrell clouds, which form around edge dislocations in lamellar liquid crystals of the smectic A variety decorated with nanoparticles. This work could be important, for example, in the context of improving the lubricating performance of such liquid crystals.

The Cottrell clouds are difficult to study in solid , and even more so when the dislocations are in motion. This is not the case in a smectic A liquid crystals doped with where the Cottrell clouds are visible under a simple optical microscope. In addition, the density of dislocations can be controlled experimentally in these materials, allowing the dislocation mobility to be directly measured. A recent experiment showed that it decreases as the concentration of nanonoparticles increases. This leads to a hardening of the material, very similar to what is observed in .

When the dislocations move slowly, the Cottrell clouds of nanoparticles are dragged by the dislocations, which decreases their mobility. In this study, the authors demonstrate a formula previously used to approximate the mobility of dislocations in the presence of Cottrell . They then perform a numerical simulation of the problem to study how the Cottrell cloud erodes when the dislocation moves at high speed.

Explore further: Researchers find plastic deformation develops differently in titanium and zirconium

More information: P. Oswald et al, Drag of a Cottrell atmosphere by an edge dislocation in a smectic-A liquid crystal, The European Physical Journal E (2017). DOI: 10.1140/epje/i2017-11573-9

Related Stories

Towards controlled dislocations

October 20, 2014

Crystallographic defects or irregularities (known as dislocations) are often found within crystalline materials. Two main types of dislocation exist: edge and screw type. However, dislocations found in real materials tend ...

Recommended for you

Some black holes erase your past

February 21, 2018

In the real world, your past uniquely determines your future. If a physicist knows how the universe starts out, she can calculate its future for all time and all space.

Reaching new heights in laser-accelerated ion energy

February 20, 2018

A laser-driven ion acceleration scheme, developed in research led at the University of Strathclyde, could lead to compact ion sources for established and innovative applications in science, medicine and industry.

MEMS chips get metatlenses

February 20, 2018

Lens technologies have advanced across all scales, from digital cameras and high bandwidth in fiber optics to the LIGO lab instruments. Now, a new lens technology that could be produced using standard computer-chip technology ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.