The secret to improving liquid crystal's mechanical performance

By deliberately interrupting the order of materials - by introducing different atoms in metal or nanoparticles in liquid crystals - we can induce new qualities. For example, metallic alloys like duralumin, which is composed of 95% of aluminium and 5% copper, are usually harder than the pure metals. This is due to an elastic interaction between the defects of the crystal, called dislocations, and the solute atoms, which form what are referred to as Cottrell clouds around them. In such clouds, the concentration of solute atoms is higher than the mean concentration in the material.

In a paper published in EPJ E, Patrick Oswald from the École Normale Supérieure of Lyon, France, and Lubor Lejček from the Czech Academy of Sciences have now theoretically calculated the static and dynamical properties of the Cottrell clouds, which form around edge dislocations in lamellar liquid crystals of the smectic A variety decorated with nanoparticles. This work could be important, for example, in the context of improving the lubricating performance of such liquid crystals.

The Cottrell clouds are difficult to study in solid , and even more so when the dislocations are in motion. This is not the case in a smectic A liquid crystals doped with where the Cottrell clouds are visible under a simple optical microscope. In addition, the density of dislocations can be controlled experimentally in these materials, allowing the dislocation mobility to be directly measured. A recent experiment showed that it decreases as the concentration of nanonoparticles increases. This leads to a hardening of the material, very similar to what is observed in .

When the dislocations move slowly, the Cottrell clouds of nanoparticles are dragged by the dislocations, which decreases their mobility. In this study, the authors demonstrate a formula previously used to approximate the mobility of dislocations in the presence of Cottrell . They then perform a numerical simulation of the problem to study how the Cottrell cloud erodes when the dislocation moves at high speed.


Explore further

Researchers find plastic deformation develops differently in titanium and zirconium

More information: P. Oswald et al, Drag of a Cottrell atmosphere by an edge dislocation in a smectic-A liquid crystal, The European Physical Journal E (2017). DOI: 10.1140/epje/i2017-11573-9
Journal information: European Physical Journal E

Provided by Springer
Citation: The secret to improving liquid crystal's mechanical performance (2017, October 11) retrieved 25 April 2019 from https://phys.org/news/2017-10-secret-liquid-crystal-mechanical.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
2 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more