High-energy ions' movement affected by silicon crystal periodicity

March 22, 2018, Springer
High-energy ions' movement affected by silicon crystal periodicity
Simulated spatial and angular distributions for high-energy protons along a silicon axis. Credit: Springer

The thinner the silicon crystal, the better. Indeed, thinner crystals provide better ways to manipulate the trajectories of very high-energy ions in particle accelerators. Further applications include materials analysis, semiconductor doping and beam transport in large particle accelerators. All of these rely on our understanding of how positively-charged high-energy particles move through crystals.

This process, called ion channelling, is the focus of a new paper by Mallikarjuna Motapothula and Mark Breese working at the National University of Singapore. In a paper published in EPJ B, the authors study how the crystal periodicity affects the motion of ions whose belongs to a 1 to 2 MeV range, as they are transmitted through very thin crystals on the order of a few hundred nanometres, and how it impacts their angular distribution.

Channelling in crystals occurs when the transverse energy of incident ions is less than the maximum potential energy associated with an atom row or a crystal plane. The authors study the trajectories of high-energy ions, which pass through several radial rings of atomic strings before exiting the thin crystal. Each ring may focus, steer or scatter the channelled ions in the transverse direction.

What is so interesting about this work is that it relies on an advanced process of fabricating much thinner crystals than was previously possible, reaching 55 nanometres. This, in turn, makes it possible to observe much more sensitive and fine angular structures in the distribution of transmitted ions.

Thanks to such advanced materials, the authors found that several previously observed but poorly understood phenomena related to ion channelling can now be explained. These phenomena are related to the fact that ions approach the crystal nuclei within a certain range of distances and are scattered through an angle large enough for them to interact with several adjacent atoms before exiting the thin crystal with a distinctive angular distribution.

Explore further: Discovery creates a new paradigm for creating materials from crystals

More information: Mallikarjuna Rao Motapothula et al, A study of small impact parameter ion channeling effects in thin crystals, The European Physical Journal B (2018). DOI: 10.1140/epjb/e2018-80580-4

Related Stories

Meteorite impact on a nano scale

August 29, 2016

A meteorite impacting the earth under a grazing angle of incidence can do a lot of damage; it may travel a long way, carving a trench into the ground until it finally penetrates the surface. The impact site may be vaporized, ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.