Researchers create 3-D structure of the nuclear pore complex

March 14, 2018, Boston University School of Medicine

For the first time, researchers have produced a nearly complete three-dimensional structure for the yeast Nuclear Pore Complex (NPC). This discovery represents a major step toward identifying the atomic structure of the NPC, which soon may provide researchers with a better understanding of how the central transport channel functions.

The NPC is the largest in the cell and spans the double membrane of the nuclear envelope. This remarkable channel provides a gateway to transport macromolecules back and forth between the nucleus and the cytoplasm. Due to its large size and dynamic nature a full structural and functional understanding of the NPC had been impeded until now.

The of the NPC was determined using a novel Integrative Modeling approach in which information from a large number of different experiments was used to computationally determine a set of models that best fit all the input data. The sheer size and complexity of the channel required data contributed directly from nine laboratories. In total, researchers were able to accurately place 552 NPC proteins, known as nucleoporins, within this large channel which is shaped somewhat like a wagon wheel with eight major spokes that connect the core scaffold to a more flexible central channel region (the central transporter).

"This transport gateway provides a control point to regulate development and cell growth. Unraveling the architecture of this mammoth machine provides us with a great deal of insight into how this channel is constructed and suggests how it may function," explained corresponding author Christopher Akey, PhD, professor physiology and biophysics at Boston University School of Medicine.

According to the researchers, these findings may one day help explain changes in cancer .

The findings appear in the journal Nature.

Explore further: Structural and dynamic differences between selective and non-selective ion channels

More information: Integrative structure and functional anatomy of a nuclear pore complex, Nature (2018). nature.com/articles/doi:10.1038/nature26003

Related Stories

How shuttling proteins operate nuclear pores

September 4, 2017

Nuclear pore complexes are tiny channels where the exchange of substances between the cell nucleus and the cytoplasm takes place. Scientists at the University of Basel report on startling new research that might overturn ...

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.