Microscope enables researchers to control motion within living cells

February 6, 2018, Max Planck Society
Flow of cell fluid in a worm embryo: a new microscope allows researchers to change the flow direction. As a result, the head-to-tail body axis of the embryo is reversed. Credit: Molecular Cell Biology and Genetics

Simple motion inside biological cells, such as the streaming of cytoplasm—the liquid cell interior—is widely believed to be essential for cells and the development of complex organisms. But due to the lack of suitable tools, this intracellular motion could so far not be tested as hypothesized. Now, a team of researchers from the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden found a way to induce and control motion within living cells and early embryos. Rather than using microscopes simply for observations, the team around Moritz Kreysing managed to actively guide central developmental processes in worm embryos by a new cell-biological technique called FLUCS. This new microscopy paradigm paves the way towards a systematic understanding of how complex organisms develop and what keeps them protected from malfunction and disease. These findings were published in the current issue of the journal Nature Cell Biology.

A central question in biology is how entire organisms develop from single fertilized eggs. And although genetic research has revealed deep insights into this enigmatic subject in recent years, one particular aspect of development remained elusive. For an organism to develop a structured body, biomolecules need to move to specific sites inside the embryo, similar to building material on a construction site. A particularly important example for this distribution of material inside cells is the polarization of an embryo, which defines where the head and tail of a worm will grow. But until now, it has remained controversial which transport mechanisms define this head-tail polarization so precisely, because it was not possible to move the inside of an embryo without harming it.

A team of researchers around Moritz Kreysing in collaboration with other groups at MPI-CBG, as well as the Faculty of Mathematics and the Biotechnology Center, both of the TU Dresden, has now succeeded in inducing controlled flows in living with a non-invasive laser technology called FLUCS (focused-light-induced-cytoplasmic-streaming). With this truly revolutionary tool at hand (see figure), the researchers were able to probe the function of cytoplasmic motion in the process of embryo polarization.

Matthäus Mittasch, the leading author of the study says: "With FLUCS, microscopy of growing embryos becomes truly interactive". And indeed: with the help of realistic computer simulations the researchers even managed to reverse the head-to-tail body axis of worm embryos with FLUCS, leading to inverted development.

Lead investigator Moritz Kreysing, with a dual affiliation to the Center for Systems Biology Dresden, concludes: "The ability to actively move the interior of will help to understand how these change shape, how they move, divide, respond to external signals, and ultimately how entire organisms emerge guided by microscale motion." On the medical side, FLUCS has the potential to improve our understanding of developmental defects, aid in-vitro fertilization, organism cloning, and the discovery of new drugs.

Explore further: The organizer of body axes: 600 million years old molecular principles

More information: Matthäus Mittasch et al. Non-invasive perturbations of intracellular flow reveal physical principles of cell organization, Nature Cell Biology (2018). DOI: 10.1038/s41556-017-0032-9

Related Stories

The eyes have it

August 29, 2017

Our bodies, with all their different features and variations, are the result of well-orchestrated processes that dictate what and how cells develop into the organs and tissues that comprise our anatomy. Much of the information ...

Solving the mystery of defective embryos

January 4, 2016

It's the dream of many infertile couples: to have a baby. Tens of thousands of children are born by in vitro fertilization, or IVF, a technique commonly used when nature doesn't take its course. However, embryos obtained ...

Recommended for you

Birds startled by moving sticks

October 23, 2018

Do animals—like humans—divide the world into things that move and things that don't? Are they surprised if an apparently inanimate object jumps to life?

Chimpanzees sniff out strangers and family members

October 23, 2018

Chemical communication is widely used in the animal kingdom to convey social information. For example, animals use olfactory cues to recognize group or family members, or to choose genetically suitable mates. In contrast ...

Breakthrough test screens for all known bacterial infections

October 23, 2018

Scientists at the Center for Infection and Immunity (CII) in the Columbia University Mailman School of Public Health have developed the first diagnostic platform that can simultaneously screen for all known human pathogenic ...

Researchers have discovered a new cell structure

October 23, 2018

A new structure in human cells has been discovered by researchers at Karolinska Institutet in Sweden in collaboration with colleagues in the U.K. The structure is a new type of protein complex that the cell uses to attach ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.