Helium ions open whole new world of materials

February 26, 2018 by Niki Widdowson, Queensland University of Technology
Credit: Queensland University of Technology

QUT scientists have found an exciting new way to manipulate and design materials of the future at the atomic level and change the way they behave at a larger scale that opens the way to new applications such as early cancer biomarkers.

They have illustrated their findings with the creation of nano 'sieves' that can help separate molecules down to an unprecedented size 10,000 times finer than a human hair.

The research, Superplastic nanoscale pore shaping by ion irradiation, was published in Nature Communications today and authored by Dr Morteza Aramesh, Dr Mayamei  Yashar, Dr Annalena Wolff, and Professor Kostya (Ken) Ostrikov.

Professor Ostrikov, from QUT's Science and Engineering Faculty and Institute of Health and Biomedical Innovation, said this was one example of the possibilities of using helium ion beams generated in a helium ion microscope to change the behaviour of atoms and create new materials.

"We discovered that a beam of energetic helium ions generated in a rearranged a nanoporous anodized alumina material on the atomic scale and shrank its pores to various, unprecedented tiny sizes," Professor Ostrikov said.

"These tiny pores mean scientists could potentially 'sift' molecules into different sizes to study them individually. It could open the way to early detection of cancer, for example, through a blood test that could detect DNA produced by a cancer before the tumour developed.

Credit: Queensland University of Technology
"This new ion-assisted manipulation of matter on the tiniest of length scales completely changed the behaviour of the aluminium oxide:  when we applied moderate exposure to helium ions, its pores shrank, when we increased exposure to the ions this normally brittle and porous ceramic turned into a superplastic and gained the ability to stretch more than twice without breaking."

Dr Wolff, from QUT's Central Analytical Research Facility in the Institute for Future Environments, said the discovery would allow scientists to play with materials and see the materials'  properties change  in real time.

"We can now play with atomic bonds and see how we can use them to influence the manipulation of matter on the nanometric scale," Dr Wolff said.

Dr Aramesh, the lead author of the study, said that for researchers and engineers this finding offered potential new methods to engineer future smart materials.

"This new way of re-designing materials will help researchers and engineers to create novel smart materials with different functions, for example, new pharmaceuticals, disease diagnostics and quantum computing," Dr Aramesh said.

"We can use ion microscopes to image almost any material and to build structures that are as small as a DNA strand, so small that you could fit 64 billion of them in a single raindrop.

"Now we can see and manipulate matter on the nanometre scale we are limited only by our imagination in material design."

Explore further: How deadly dragonfly wings bust up bacteria

More information: Morteza Aramesh et al. Superplastic nanoscale pore shaping by ion irradiation, Nature Communications (2018). DOI: 10.1038/s41467-018-03316-7

Related Stories

How deadly dragonfly wings bust up bacteria

February 12, 2018

Scientists have revealed the intricate detail of how dragonfly wings kill bacteria, thanks to new methods for using very powerful microscopes to see nature's smallest structures in three dimensions.

Researchers take next step toward fusion energy

November 13, 2017

Fusion is the process that powers the sun, harnessing it on Earth would provide unlimited clean energy. However, researchers say that constructing a fusion power plant has proven to be a daunting task, in no small part because ...

Nanoscientists develop new material with controllable pores

December 6, 2017

What do your skin, the clothes you wear, and the soil you stand on have in common? They are all porous substances. Like a sponge, their surfaces are covered with tiny holes that allow liquids and gasses to pass through. Porous ...

Scientists bridge different materials by design

February 4, 2016

Scientists at the University of Liverpool have shown that it is possible to design and construct interfaces between materials with different structures by making a bridge between them.

Recommended for you

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

Can China keep it's climate promises?

March 26, 2019

China can easily meet its Paris climate pledge to peak its greenhouse gas emissions by 2030, but sourcing 20 percent of its energy needs from renewables and nuclear power by that date may be considerably harder, researchers ...

In the Tree of Life, youth has its advantages

March 26, 2019

It's a question that has captivated naturalists for centuries: Why have some groups of organisms enjoyed incredibly diversity—like fish, birds, insects—while others have contained only a few species—like humans.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.