Walking crystals may lead to new field of crystal robotics

February 23, 2018 by Lisa Zyga, Phys.org feature
Images of crystals that “walk” like an inchworm by bending and straightening under alternating temperatures. Credit: Taniguchi et al.

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion such as rolling, flipping, bending, twisting, and jumping. In the future, these moving crystals may open the doors to the development of crystal-based robots.

The researchers, led by Hideko Koshima at Waseda University in Tokyo, Japan, have published a paper on walking and rolling crystals in a recent issue of Nature Communications.

"We believe that this finding opens the doors to a new field of crystal robotics," Koshima told Phys.org. "Currently, robots made from metals are rigid and heavy, making them unsuitable for daily interaction with humans. Our goal is to make symbiotic soft robots using mechanical crystals."

In their work, the researchers investigated asymmetric crystals derived from chiral azobenzene. In experiments, they showed that exposing the crystals to alternating hot and cold temperatures (changing between 120° and 160° C over the course of approximately 2 minutes) causes changes in the crystals' shapes.

Depending on their dimensions, some of the crystals repeatedly bend and straighten. Over repeated heating and cooling cycles, these shape changes translate into the mechanical motion of inchworm-like walking.

Credit: Taniguchi et al.

Crystals with other dimensions exhibit bending and flipping under . In experiments, repeated heating and cooling cycles caused these crystals to quickly roll across a surface, attaining speeds of 16 mm/second. This was approximately 20,000 times faster than the walking crystals, which crawled along at just 3 mm/hour.

As the researchers explain, the asymmetrical shapes of the crystals is the driving force of both types of locomotion. In particular, the walking crystals have a thickness gradient while the rolling crystals have a width gradient. Both varieties of crystal experience a phase transition at a critical , and due to the asymmetry, this results in a shape change that is more pronounced at one end of the crystal than at the other.

Image and illustration of crystals that roll under alternating temperatures. Credit: Taniguchi et al.

Along with previous research that has demonstrated crystal motion in other types of crystals, the new results suggest that appear to be promising candidates for robotics. In general, materials that respond to external stimuli, such as temperature changes, have potential applications as sensors, switches, and in a wide variety of other areas.

Explore further: Robotic crystals that walk n' roll

More information: Takuya Taniguchi et al. "Walking and rolling of crystals induced thermally by phase transition." Nature Communications. DOI: 10.1038/s41467-017-02549-2

Related Stories

Robotic crystals that walk n' roll

February 21, 2018

Scientists at Waseda University may have come a step closer to innovating soft robots to care for people. Its material, however, is something you may have never expected.

Superior crystals grown from levitating droplets

December 6, 2016

Crystals that don't experience mechanical stress during growth have superior quality. Levitating liquid metal is the idea behind the project 'Perfecting metal crystals' led by the University of Twente in the Netherlands.

Recommended for you

Zirconium isotope a master at neutron capture

January 17, 2019

The probability that a nucleus will absorb a neutron is important to many areas of nuclear science, including the production of elements in the cosmos, reactor performance, nuclear medicine and defense applications.

Understanding insulators with conducting edges

January 16, 2019

Insulators that are conducting at their edges hold promise for interesting technological applications. However, until now their characteristics have not been fully understood. Physicists at Goethe University have now modelled ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

HealingMindN
5 / 5 (1) Feb 23, 2018
Even that size, I don't want it coming at me. Imagine integrating enough of them into humanoid size and the heat it would take to run it. (A robotic "Firestorm?")..

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.