Vertical micro-LEDs used to control mouse behavior via optogenetic stimulation

January 30, 2018, The Korea Advanced Institute of Science and Technology (KAIST)
KAIST team develops flexible vertical micro LED
Comparison of μ-LEDs technology. Credit: KAIST

A KAIST research team has developed flexible vertical micro LEDs (f-VLEDs) using anisotropic conductive film (ACF)-based transfer and interconnection technology. The team also succeeded in controlling animal behavior via optogenetic stimulation of the f-VLEDs.

Flexible micro LEDs have become a strong candidate for next-generation displays due to their ultra-low power consumption, fast response speed, and excellent flexibility. However, micro LED technology was previously inhibited by poor device efficiency, low thermal reliability, and the lack of interconnection technology for high-resolution micro LED displays. The research team has designed new transfer equipment and fabricated an f-VLED array (50x50) using simultaneous transfer and interconnection through the precise alignment of the ACF bonding process. These f-VLEDs achieved optical power density (30 mW/mm2) three times higher than that of lateral micro LEDs, improving thermal reliability and lifetime by reducing heat generation within the thin film LEDs.

These f-VLEDs can be applied to optogenetics for controlling the behavior of neuron cells and brains. In contrast to the electrical stimulation that activates all of the neurons in brain, optogenetics can stimulate specific excitatory or inhibitory neurons within the localized cortical areas of the brain, which facilitates precise analysis, high-resolution mapping, and neuron modulation of animal brains.

In this work, the researchers inserted the f-VLEDs into the narrow space between the skull and the brain surface and succeeded in controlling mouse behavior by illuminating motor on two-dimensional located deep below the .

Professor Lee said, "The flexible vertical micro LED can be used in low-power smart watches, mobile displays and wearable lighting. In addition, these flexible optoelectronic devices are suitable for biomedical applications such as science, phototherapeutic treatment, and contact lens biosensors." A paper on these results titled "Optogenetic Control of Body Movements via Flexible Vertical Light-Emitting Diodes on Brain Surface" has been published in Nano Energy.

Explore further: Wavy transistors that vertically gain width without increasing their on-chip footprint for future flexible displays

More information: Ah Hyung Park et al, Optogenetic Mapping of Functional Connectivity in Freely Moving Mice via Insertable Wrapping Electrode Array Beneath the Skull, ACS Nano (2016). DOI: 10.1021/acsnano.5b07889

Related Stories

Ultra-thin light emitting diodes

January 8, 2018

National University of Singapore scientists have developed energy efficient ultra-thin light-emitting diodes (LEDs) for next generation communication technologies.

Researchers develop highly flexible, wearable display

August 25, 2017

How do you feel when technology you saw in a movie is made into reality? Collaboration between the electrical engineering and the textile industries has made video screens and displays on clothing a reality.

Recommended for you

Meteorite source in asteroid belt not a single debris field

February 17, 2019

A new study published online in Meteoritics and Planetary Science finds that our most common meteorites, those known as L chondrites, come from at least two different debris fields in the asteroid belt. The belt contains ...

Diagnosing 'art acne' in Georgia O'Keeffe's paintings

February 17, 2019

Even Georgia O'Keeffe noticed the pin-sized blisters bubbling on the surface of her paintings. For decades, conservationists and scholars assumed these tiny protrusions were grains of sand, kicked up from the New Mexico desert ...

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.