Genome size affects whether plants become invasive

January 8, 2018, University of Rhode Island
URI Professor Laura Meyerson discusses her Phragmites research in a common garden in the Czech Republic. Credit: Laura Meyerson

A University of Rhode Island scientist who studies the invasive plant Phragmites was part of an international research team that found that the most significant factor in determining whether a plant will become invasive is the size of its genome.

Laura Meyerson, URI professor of natural resources science, said "our results are crystal clear. Small genomes are the most important factor in determining invasiveness, at least for Phragmites but likely for many other species as well."

The results of this research were published this week in the journal Ecology.

Working with her colleagues Petr Pyšek and the late Jan Suda from the Institute of Botany at The Czech Academy of Sciences and their team, they screened 900 populations of Phragmites from around the world and chose 100 to evaluate. The researchers grew those in a common garden in the Czech Republic where they exposed them to the same environmental conditions and regularly measured a wide variety of traits, from nutrient content and leaf toughness to plant chemistry and susceptibility to herbivores.

While all of the plants studied were of the same species, Phragmites australis, their size varied from population to population.

According to Meyerson, the senior author on the paper, their results suggest that plants with large genomes can only grow in limited locations. The Gulf of Mexico lineage of Phragmites, for instance, which has a large genome, has been unable to move out of the Gulf region, whereas the Phragmites native to Europe, which has a small genome, is highly invasive throughout North America.

"Smaller genomes are more nimble," she said. "They can grow in variable environments and at almost all latitudes."

The findings of the research team raise the question of why plants with small genomes are more likely to become invasive. She thinks they have the answer.

"The main theoretical reason has to do with minimum generation time," she explained. "The idea is that a smaller genome can be replicated more quickly than a larger genome. So if a plant is in a stressful environment, it can be replicated more quickly than if it had a larger genome. It needs fewer resources and can use its resources quickly to reproduce before its luck runs out.

"On the other hand, a smaller genome also means that it may lose genes that are potentially beneficial," added Pyšek, the first author of the paper. "So there may be a trade-off."

Scientists use flow cytometry, a simple and inexpensive technology, to measure the size of a plant's genome, and the speed and simplicity of the process provides numerous applications for the results of the research. Border security officers could quickly screen plants for genome size before they are brought across the border or imported into the country, for example.

"It gives us a cheap tool to measure their invasive potential," said Meyerson.

She also believes it could be used to prioritize the management of existing invasive populations of common reed and other plants with the same genome size characteristics.

"Land managers could screen invasive populations for genome size so they can allocate their resources more effectively to manage the most invasive species," she said. "By determining whether a has a particularly small genome , they will know that a particular plant might be more aggressive and should be targeted for removal."

Meyerson's next studies, in ongoing close cooperation with researchers from the Czech Republic, will build on these results. She is conducting experiments at URI to determine how environmental variables like salinity and temperature interact with plants of different genome sizes and how plant chemistry is affected by . Preliminary results of those studies are expected next year.

Explore further: New study in US and Europe shows how invasive plant species fare better than natives

More information: Small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology. DOI: 10.1002/ecy.2068

Related Stories

When one reference genome is not enough

December 20, 2017

Much of the research in the field of plant functional genomics to date has relied on approaches based on single reference genomes. But by itself, a single reference genome does not capture the full genetic variability of ...

Genome of wheat ancestor sequenced

November 15, 2017

Sequencing the bread wheat genome has long been considered an almost insurmountable task, due to its enormous size and complexity. Yet it is vitally important for the global food supply, providing more than 20 percent of ...

Genome evolution and carbon dioxide dynamics

October 25, 2012

Using the size of guard cells in fossil plants to predict how much DNA each cell contained (the genome size), researchers have discovered that variations in genome sizes over geological time correlate with atmospheric carbon ...

Recommended for you

Scientists shed light on biological roots of individuality

February 16, 2018

Put 50 newborn worms in 50 separate containers, and they'll all start looking for food at roughly the same time. Like members of other species, microscopic C. elegans roundworms tend to act like other individuals their own ...

Plants are given a new family tree

February 16, 2018

A new genealogy of plant evolution, led by researchers at the University of Bristol, shows that the first plants to conquer land were a complex species, challenging long-held assumptions about plant evolution.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.