A biological solution to carbon capture and recycling?

January 8, 2018 by Roddy Isles, University of Dundee
E.coli bacteria shown to be excellent at CO2 conversion. Credit: NIAID/Wikimedia Commons

Scientists at the University of Dundee have discovered that E. coli bacteria could hold the key to an efficient method of capturing and storing or recycling carbon dioxide.

Cutting (CO2) emissions to slow down and even reverse global warming has been posited as humankind's greatest challenge. It is a goal that is subject to considerable political and societal hurdles, but it also remains a technological challenge.

New ways of capturing and storing CO2 will be needed. Now, normally harmless gut bacteria have been shown to have the ability to play a crucial role.

Professor Frank Sargent and colleagues at the University of Dundee's School of Life Sciences, working with local industry partners Sasol UK and Ingenza Ltd, have developed a process that enables the E. coli bacterium to act as a very efficient capture device.

Professor Sargent said, "Reducing will require a basket of different solutions and nature offers some exciting options. Microscopic, single-celled bacteria are used to living in extreme environments and often perform chemical reactions that plants and animals cannot do.

"For example, the E. coli bacterium can grow in the complete absence of oxygen. When it does this it makes a special metal-containing enzyme, called 'FHL', which can interconvert gaseous carbon dioxide with liquid . This could provide an opportunity to capture carbon dioxide into a manageable product that is easily stored, controlled or even used to make other things. The trouble is, the normal conversion process is slow and sometime unreliable.

"What we have done is develop a process that enables the E. coli bacterium to operate as a very efficient biological carbon capture device. When the bacteria containing the FHL enzyme are placed under pressurised carbon dioxide and hydrogen gas mixtures – up to 10 atmospheres of pressure – then 100 per cent conversion of the carbon dioxide to formic acid is observed. The reaction happens quickly, over a few hours, and at ambient temperatures.

"This could be an important breakthrough in biotechnology. It should be possible to optimise the system still further and finally develop a `microbial cell factory' that could be used to mop up carbon dioxide from many different types of industry.

"Not all bacteria are bad. Some might even save the planet."

Not only capturing carbon dioxide but storing or recycling it is a major issue. There are millions of tonnes of CO2 being pumped into the atmosphere every year. For the UK alone, the net emission of C02 in 2015 was 404 million tonnes. There is a significant question of where can we put it all even if we capture it, with current suggestions including pumping it underground in to empty oil and gas fields.

"The E. coli solution we have found isn't only attractive as a , it converts it into a liquid that is stable and comparatively easily stored," said Professor Sargent.

"Formic acid also has industrial uses, from a preservative and antibacterial agent in livestock feed, a coagulant in the production of rubber, and, in salt form, a de-icer for airport runways. It could also be potentially recycled into biological processes that produce CO2, forming a virtuous loop."

The results of the research are published in the journal Current Biology.

Explore further: Highly efficient photocatalyst that converts carbon dioxide to methane

More information: Magali Roger et al. Efficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli, Current Biology (2017). DOI: 10.1016/j.cub.2017.11.050

Related Stories

Capturing and converting CO2 in a single step

August 11, 2015

Turning carbon dioxide from coal-fired power plants into a more valuable chemical would reduce carbon emissions while creating a revenue return. At the University of Pittsburgh, researchers computationally derived a metal-free ...

Process turns wheat flour into CO2-capturing micropores

October 6, 2016

Researchers have shown how a process for the "carbonization" of wheat flour creates numerous tiny pores that capture carbon dioxide, representing a potential renewable technology to reduce the industrial emission of carbon ...

Recommended for you

Pigs form a visual concept of human faces

August 17, 2018

Contrary to previous studies, pigs appear to have better visual discrimination abilities than had previously been assumed. Cognition researchers from the Messerli Research Institute showed in a new study that pigs not only ...

Are our wild animals growing old gracefully?

August 17, 2018

For most of us, the body's deterioration is an unavoidable part of getting older. This age-related decline, known as "senescence", can occur subtly and slowly for some individuals, while for others it happens much faster. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gkam
1 / 5 (2) Jan 08, 2018
I like it. We can mine the Deniers for their e. coli.

They are full of it.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.