Two studies find stress reprograms cells

December 20, 2017, Case Western Reserve University
Credit: CC0 Public Domain

In a pair of publications, researchers have shown how cells adapt to stressors—like water loss—by reprogramming their internal signaling networks. The studies describe previously unknown mechanisms that cells use to send signals between cellular machinery and avoid cell death. According to the authors, drugs that enhance the adaptation mechanisms could help cells stave off multiple diseases, including type 2 diabetes. The studies were published in Cell Reports and Molecular Cell.

"We discovered that switch off non-essential functions when faced with threats to their survival. At the same time, cells activate new mechanisms to sustain essential functions," said Maria Hatzoglou, PhD, senior author on both papers, professor of genetics and nutrition at Case Western Reserve University School of Medicine, and member of the Case Comprehensive Cancer Center.

The studies focus on two types of cellular stress: cell shrinkage from water loss, and dysfunction of the , the cellular organelle that makes and guides proteins to specific destinations. Both have diverse causes—everything from a person's genetics to a cell's environment—and cells must adapt to the stressors, or perish. In the new studies, researchers describe a series of cellular workarounds. "Cells protect themselves by slowing down energy-consuming processes, such as protein synthesis. This prepares cells to reprogram the to make only the essential proteins needed for survival," Hatzoglou said.

In the Molecular Cell study, Hatzoglou and colleagues describe how stressed cells focus on critical protein production to sustain the function of the endoplasmic reticulum, by transmitting signals along unexpected molecular pathways. In the Cell Reports study, researchers put cornea cells in salt water to dry them out. The cells responded by activating pathways that help transport amino acids. By doing so, the cells were able to prevent water loss. The findings suggest medications that target the transport pathways could help treat . Such medications may also help treat neurodegenerative diseases caused by defects in protein equilibriums.

Said Hatzoglou, "Both our papers contribute to our understandings of the ways cells try to ensure proteins are properly folded and navigated through the cells, so they can reach their final destinations and assume their normal functions. This process is known as the 'integrated stress response.'" In Molecular Cell, researchers outline how cells can "reprogram" the integrated stress response. As the journal explains, the authors "unravel the mechanism of adaptation to chronic stress that encompasses previously unappreciated remodeling." The study outlines a cascade of new cellular signals that cells use to adapt to stressful conditions. Interestingly, the novel stress defense mechanism involves remodeling of the cellular machinery that translates mRNA genetic material into a select group of proteins. This selective protein synthesis protects stressed cells from life-threatening endoplasmic reticulum dysfunction.

In Molecular Cell, Hatzoglou and coworkers also show that endoplasmic reticulum dysfunction is marked by a novel mechanism involving cytoplasmic vacuolization—the formation of large, toxic pockets inside cells that is reminiscent of foamy cells, observed in many human pathologies. This phenotype is a pathologic feature in the brains of the neurodegenerative diseases called childhood ataxias, and introduces the interesting possibility that their cause is the result of endoplasmic reticulum dysfunction in nerve cells.

The findings could also lead to new diabetes treatments. "Patients who develop type 2 diabetes become ill because they make too much insulin. This causes the endoplasmic reticulum to be overwhelmed and unable to handle the sudden protein overload, leading to dysfunction. This dysfunction later kills in the pancreas," said Hatzoglou. "We believe by enhancing the adaptive response to increased insulin we can delay endoplasmic reticulum dysfunction and the onset of disease." Hatzoglou received funding from the National Institute of Diabetes and Digestive and Kidney Diseases to study how activating cellular stress responses could help delay diabetes progression.

Together with colleagues, Hatzoglou is planning future experiments to understand the molecular mechanisms that defend cells during diverse stress conditions. The findings could lead to new therapeutics to prevent cell death in multiple disease states—from dry eye syndrome to diabetes.

Explore further: Starvation causes atypical cell death

More information: Dawid Krokowski et al, GADD34 Function in Protein Trafficking Promotes Adaptation to Hyperosmotic Stress in Human Corneal Cells, Cell Reports (2017). DOI: 10.1016/j.celrep.2017.11.027

Bo-Jhih Guan et al. A Unique ISR Program Determines Cellular Responses to Chronic Stress, Molecular Cell (2017). DOI: 10.1016/j.molcel.2017.11.007

Related Stories

Starvation causes atypical cell death

May 3, 2017

Researchers from the Cell death group of the Bellvitge Biomedical Research Institute (IDIBELL), led by Dr. Cristina Muñoz-Pinedo, have characterized the cell death process due to starvation, in which the endoplasmic reticulum ...

Cellular calcium handling in diabetes

September 29, 2017

Tight regulation of calcium levels in the endoplasmic reticulum (ER) – a cellular organelle with multiple functions – contributes to insulin secretion by pancreatic beta cells. Although ER calcium handling is perturbed ...

Protein regulates protein folding in cells during stress

December 21, 2012

(Phys.org)—Cornell researchers have discovered that a protein known for moving cells around in the body also helps regulate a cellular organelle responsible for generating one-third of all proteins in the human body.

A protein that can mean life or death for cells

September 17, 2013

Each cell in an organism has a sensor that measures the health of its "internal" environment. This "alarm" is found in the endoplasmic reticulum (ER), which is able to sense cellular stress and trigger either rescue responses ...

Treatment target for diabetes, Wolfram syndrome

August 7, 2012

Inflammation and cell stress play important roles in the death of insulin-secreting cells and are major factors in diabetes. Cell stress also plays a role in Wolfram syndrome, a rare, genetic disorder that afflicts children ...

Recommended for you

Tiny tech tracks hummingbirds at urban feeders

December 12, 2018

Beep" is not a sound you expect to hear coming from a hummingbird feeder. Yet "beeps" abounded during a study led by the University of California, Davis to monitor hummingbirds around urban feeders and help answer questions ...

Rice plants that grow as clones from seed

December 12, 2018

Plant biologists at the University of California, Davis have discovered a way to make crop plants replicate through seeds as clones. The discovery, long sought by plant breeders and geneticists, could make it easier to propagate ...

Researchers find positive visual contagion in Barbary macaques

December 12, 2018

A pair of researchers at the University of Roehampton has found that captive Barbary macaques are capable of engaging in positive visual contagion—a behavior normally only seen in humans. In their paper published in Proceedings ...

The real history of quantum biology

December 12, 2018

Quantum biology, a young and increasingly popular science genre, isn't as new as many believe, with a complicated and somewhat dark history, explain the founders of the world's first quantum biology doctoral training centre.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.