Scientists explore quantum properties in the two-dimensional limit

December 27, 2017, Delft University of Technology
Credit: TU Delft/Dirk Groenendijk

As electronic components become smaller, understanding how materials behave at the nanoscale is crucial for the development of next-generation electronics. Unfortunately, it is very difficult to predict what happens when materials are only a few atomic layers thick. To improve our understanding of the so-called quantum properties of materials, scientists at the TU Delft investigated thin slices of SrIrO3, a material that belongs to the family of complex oxides. Their findings have recently been published Physical Review Letters.

The researchers synthesized the material using pulsed laser deposition (PLD), a method for depositing single crystal films with atomic layer precision. "We studied crystals with thicknesses down to 2 (0.8 nanometres)," said lead author Dirk Groenendijk, who is a Ph.D. candidate at TU Delft.

Electrons can normally move freely in the material, and SrIrO3 shows metallic behaviour. However, the scientists found that at a thickness of 4 layers, there appears to be a turning point. Below this thickness, the electrons become localized and the material transitions to an insulating state. At the same time, the material orders magnetically and the effects of spin-orbit coupling are strongly enhanced. This last property is of interest for the development of new , because the spin of the electron can be used to store and transfer information.

The next generation of electronic devices will require further miniaturization of their components, and it will not be long before chip manufacturers go below 10 nanometres. "At this scale, you can count the number of atoms, and you enter the realm of quantum mechanics," says Groenendijk. For future devices, researchers are also looking for new materials with currently inaccessible functionalities. In this respect, are promising candidates that display a wide variety of exotic phenomena. The research of Groenendijk and colleagues constitutes an important step towards the understanding of their quantum properties in the two-dimensional limit.

Explore further: New step towards future complex oxide electronics

More information: D.J. Groenendijk et al., Spin-Orbit Semimetal SrIrO3 in the Two-Dimensional Limit, Physical Review Letters (2017). DOI: 10.1103/PhysRevLett.119.256403

Related Stories

New step towards future complex oxide electronics

November 22, 2017

Researchers from TU Delft, Cornell University and the University of Cagliari report an interesting method for turning a highly insulating material into a highly conducting system. The process involves combining three different ...

Recommended for you

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

Urban heat island effects depend on a city's layout

February 22, 2018

The arrangement of a city's streets and buildings plays a crucial role in the local urban heat island effect, which causes cities to be hotter than their surroundings, researchers have found. The new finding could provide ...

New quantum memory stores information for hours

February 22, 2018

Storing information in a quantum memory system is a difficult challenge, as the data is usually quickly lost. At TU Wien, ultra-long storage times have now been achieved using tiny diamonds.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.