Physicists show feasibility of building a trapped Rydberg ion quantum computer

December 13, 2017 by Lisa Zyga, Phys.org feature
Using lasers, the researchers excited a strontium ion to the Rydberg state, which they then used to demonstrate a single-qubit Rydberg gate—one of the basic elements of the proposed trapped Rydberg ion quantum computer. Credit: Higgins et al. ©2017 American Physical Society

(Phys.org)—Physicists have built one of the first basic elements of a trapped Rydberg ion quantum computer: a single-qubit Rydberg gate. The achievement illustrates the feasibility of building this new type of quantum computer, which has the potential to overcome the scalability problems facing current approaches to quantum computing.

The physicists, Gerard Higgins, Markus Hennrich, and their coauthors at Stockholm University and the University of Innsbruck, have published a paper on their results with single trapped Rydberg ions in a recent issue of Physical Review Letters.

Currently, one of the biggest challenges facing quantum computers is scaling up the number of entangled qubits used in each logic gate, which is essential for practical . Scaling is so difficult in part because the multiqubit commonly used in trapped ion systems suffer from the problem of "spectral crowding" as the number of qubits increases. However, trapped Rydberg ion systems are immune to spectral crowding, which raises the possibility that quantum computers made from trapped Rydberg ion qubits may offer a new route to realizing scalable quantum computers.

In the current study, the researchers built the first single- Rydberg gate, and they expect that it should be possible to extend the single-qubit version to a two-qubit Rydberg gate, and to continue to add more qubits in the future.

In order to build the single-qubit Rydberg gate, the physicists needed to demonstrate, for the first time, the coherent Rydberg excitation of an ion. This was a two-step process in which they started with a strontium ion confined in a trap. Using lasers, they excited the ion from a low-lying qubit state to a first excited state, and in turn excited this state to an even higher-energy Rydberg state. Rydberg states are considered exotic states of matter, as one of the ion's valence (outermost) electrons is excited to such a high-energy orbital and located so far from the nucleus that it is barely bound to the ion.

The key achievement here is that this Rydberg state was achieved in a coherent fashion, which is necessary for building multiqubit Rydberg gates. By combining the coherent Rydberg excitation with methods of qubit manipulation, the researchers could then demonstrate the single-qubit Rydberg gate.

"This work shows that Rydberg ions can be coherently controlled, and so many of the interesting phenomena that are explored with neutral Rydberg atoms may also be explored in this system, perhaps with additional advantages owing to the exceptional control that researchers have over trapping ion systems compared with trapped atom systems," Higgins told Phys.org.

In addition to their potential scalability advantages, future trapped Rydberg ion computers may also have advantages such as good qubit control and fast gate operation. The researchers plan to further investigate these possibilities in the future.

"Next we want to measure strong interactions between two Rydberg ions, and use this to entangle ions together," Higgins said. "Trapped Rydberg ions have the potential to be used to generate very large entangled ."

Explore further: Physicists set new record with 10-qubit entanglement

More information: Gerard Higgins, Fabian Pokorny, Chi Zhang, Quentin Bodart, and Markus Hennrich. "Coherent Control of a Single Trapped Rydberg Ion." Physical Review Letters. DOI: 10.1103/PhysRevLett.119.220501

Related Stories

Physicists set new record with 10-qubit entanglement

November 29, 2017

(Phys.org)—Physicists have experimentally demonstrated quantum entanglement with 10 qubits on a superconducting circuit, surpassing the previous record of nine entangled superconducting qubits. The 10-qubit state is the ...

Scientists demonstrate one of largest quantum simulators

November 29, 2017

Physicists at MIT and Harvard University have demonstrated a new way to manipulate quantum bits of matter. In a paper published today in the journal Nature, they report using a system of finely tuned lasers to first trap ...

Ion qubits offer early glimpse of quantum error detection

November 9, 2017

Computers based on quantum physics promise to solve certain problems much faster than their conventional counterparts. By utilizing qubits—which can have more than just the two values of ordinary bits—quantum computers ...

New silicon structure opens the gate to quantum computers

December 12, 2017

In a major step toward making a quantum computer using everyday materials, a team led by researchers at Princeton University has constructed a key piece of silicon hardware capable of controlling quantum behavior between ...

Simple model explains crystal formation of exceptional atoms

July 23, 2015

Scientists from the FOM Foundation, Eindhoven University of Technology and the University of Buenos Aires have discovered why fluctuations in the number of Rydberg atoms that forms in an ultracold gas decreases as the interaction ...

Recommended for you

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

Artificial agent designs quantum experiments

January 19, 2018

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.