Robotic device tracks plant growth at the cellular level

November 20, 2017, American Society of Plant Biologists
Researcher Sarah Robinson setting up ACME in the lab. Credit: Cris Kuhlemeier, University of Bern

Determining how various treatments and conditions affect the mechanical properties of plant cells could allow scientists to understand plant growth at the cellular level and devise ways to enhance it. In a breakthrough report published in The Plant Cell, a team of researchers introduces an innovative robotic tool that measures the mechanical properties of plant cells with cellular resolution.

Plant scientists have a new tool in their toolkit. The automated confocal micro-extensometer (ACME)—developed by a team of researchers in Europe and the US—allows scientists to measure spatial variation in the of plant with unprecedented accuracy.

Plant cell growth is limited by the mechanical properties of the surrounding cell wall. Cell walls in the growing parts of a plant are thought to be much more extensible (stretchy) than those in mature parts, and these local differences in cell wall extensibility affect the overall shape of the plant. Until now, it was not possible to measure cell wall extensibility in the direction of growth in living . A team of researchers led by Cris Kuhlemeier of the Institute of Plant Sciences at the University of Bern in Switzerland created a system that does just that.

"Intuitively the simplest way to do this is to stretch the plant and look at how much each cell stretches," explains first author Sarah Robinson. Using this principle, the researchers cobbled together a robotic pipeline that combines custom and commercially available parts. They designed a specialized device that holds plants in place without damaging them and then stretches them under a defined pull. The device, which is mounted on a microscope, is controlled by software that allows the user to specify the duration and degree of stretching. High-resolution images of the plant are taken during stretching, and custom-built software uses the images to compute mechanical properties in different regions of the plant. The authors named the device ACME after the fictitious corporation featured in the Road Runner/Wile E. Coyote cartoons, because they were inspired by the tireless efforts of Wile E. Coyote. "Thankfully, in the end, we were more successful, but some of our prototypes were less elegant and involved a lot of scotch tape," jokes Sarah.

Using ACME, the authors demonstrated that cells in the stems of seedlings exhibit a gradient of mechanical properties in the presence of the plant growth hormone gibberellic acid. Furthermore, they used their versatile system to show that stretching induces irreversible increases in cell length in living plant cells, but that the increases in cell length are partially reversed in dead plant tissues once stretching stops. While ACME was built to accommodate small samples—the specimen used in this study was a tiny weed known as thale cress—it can readily be adapted for use with larger samples and different imaging systems.

The team has made all the information needed to create this system freely available, so that plant scientists in other labs can use ACME in their own research. "ACME has many applications and scope for future use," says Sarah Robinson. For instance, this device can help us understand the mechanisms by which various inputs and treatments alter plant growth at the cellular level. Furthermore, it might elucidate conditions and treatments that promote wall extensibility, and thus enhance at the . Given the escalating demands for biomass production, this is a very exciting prospect.

Explore further: Plant cell walls' stretch-but-don't-break growth more complex than once thought

More information: Plant Cell, DOI: 10.1105/tpc.17.00753

Related Stories

A better dye job for roots—in plants

June 1, 2017

Once we start coloring our hair, we may be surprised to learn that we begin to have a problem in common with plant biologists: finding the right dye for our roots. In the case of the biologists, just the right chemical is ...

Biologists find how plants reconstitute stem cells

May 19, 2016

Stem cells are typically thought to have the intrinsic ability to generate or replace specialized cells. However, a team of biologists at NYU showed that regenerating plants can naturally reconstitute their stem cells from ...

How bacteria maintain and recover their shape

July 26, 2017

Bacteria come in all shapes and sizes—some are straight as a rod, others twist like a corkscrew. Shape plays an important role in how bacteria infiltrate and attack cells in the body. The helical shape of Helicobacter pylori, ...

Recommended for you

Fish-inspired material changes color using nanocolumns

March 20, 2019

Inspired by the flashing colors of the neon tetra fish, researchers have developed a technique for changing the color of a material by manipulating the orientation of nanostructured columns in the material.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.