Inorganic-organic halide perovskites for new photovoltaic technology

November 7, 2017, Science China Press

Perovskite solar cells (PSCs) have received worldwide attention due to excellent power-to-electricity conversion efficiency (PCE). Currently, 22.1 percent certified PCE has been achieved compared to those of CIGS and CdTe solar cells. However, there are still some critical issues to be solved in order to promote PSC commercialization.

Perovskite metal halide materials, such as CH3NH3PbI3, have attracted wide interest in the field of photoelectric conversion, detecting and luminescence. As an emerging semiconductor, this type of material has distinct advantages of high light absorption coefficient, long carrier lifetime, low defect density and exciton binding energy, and low fabrication cost. The of the (PSCs) has been exceeding 22 percent, even higher than that of multicrystalline silicon , implying its potential commercial application. In the development process of PSCs, Chinese scientists have made contributions in developing efficient hole transport material-free PSCs, exploring new materials with photoelectric and luminescence properties, regulating the material fabrication, integrating large-area devices, and investigating the stability issue of the cell.

Here, Meng's group from Institute of Physics, Chinese Academy of Sciences, reviews the latest advance from the perspective of material structure, fabrication technology to the critical physics properties. Especially for the physics properties, the doping, defects, carriers, junction and electric field, ion transportation and their influence on the semiconductor properties are discussed.

The carrier property of ternary perovskite is closely related to the self-doping, and the carrier control can also be experimentally realized by regulating the physics-chemistry process behind the material fabrication. Meanwhile, impurity atoms could be an alternative for the carrier adjustment. Due to the p-type doping, a single heterojunction at the TiO2/perovskite interface was observed in the cell, where the heterojunction is mainly located in the perovskite region. Interestingly, no obvious junction was found at the perovskite/hole transporting layer interface, which implies that the cell may be not a p-i-n cell. For the defect properties, some works have been reported. The defect density of these low-temperature solution-processed perovskites is as low as 1015 cm-3, which thus contributes to the long carrier lifetime. Recently, significant ion transport in the material has been found, which would redistribute the doping and defect in the cell, thus affecting the photoelectric behavior and stability.

These physics properties play essential roles in the operation of the cell and need to be understood thoroughly. For the cell, the low stability is the key limitation to its further development, and the physics stability has the critical effect. It is believed that, with substantial effort toward developing new hybrid perovskite and new fabrication techniques, a reliable photovoltaic technology can be realized in the future.

Explore further: Researchers develop highly stable perovskite solar cells

More information: Dongmei Li et al, Inorganic–organic halide perovskites for new photovoltaic technology, National Science Review (2017). DOI: 10.1093/nsr/nwx100

Related Stories

Researchers develop highly stable perovskite solar cells

October 25, 2017

A recent study, affiliated with UNIST has presented a highly stable perovskite solar cells (PSCs), using edged-selectively fluorine (F) functionalized graphene nano-platelets (EFGnPs). This breakthrough has gotten much attention ...

Researchers create single-crystal perovskite solar cells

August 29, 2017

Photovoltaic conversion is regarded as the ultimate solution to the growing demand for energy, yet traditional silicon-based solar cells are expensive to produce, and production itself involves intensive energy consumption. ...

Stability challenge in perovskite solar cell technology

December 23, 2016

While solar cell technology is currently being used by many industrial and government entities, it remains prohibitively expensive to many individuals who would like to utilize it.. There is a need for cheaper, more efficient ...

Recommended for you

Scientists discover new 'architecture' in corn

January 21, 2019

New research on the U.S.'s most economically important agricultural plant—corn—has revealed a different internal structure of the plant than previously thought, which can help optimize how corn is converted into ethanol.

Targeting 'hidden pocket' for treatment of stroke and seizure

January 19, 2019

The ideal drug is one that only affects the exact cells and neurons it is designed to treat, without unwanted side effects. This concept is especially important when treating the delicate and complex human brain. Now, scientists ...

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

Using bacteria to create a water filter that kills bacteria

January 18, 2019

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.