Quantum manipulation power for quantum information processing gets a boost

October 11, 2017, Springer

Traditionally, heat engines produce heat from the exchange between high-temperature and low-temperature baths. Now, imagine a heat engine that operates at quantum scale, and a system made up of an atom interacting with light (photons) confined in a reflective cavity of sub-atomic dimensions. This setup can either be at a high or low temperature, emulating the two baths found in conventional heat engines. Controlling the parameters influencing how such quantum heat engine models work could dramatically increase our power to manipulate the quantum states of the coupled atom-cavity, and accelerate our ability to process quantum information. In order for this to work, we have to find new ways of improving the efficiency of quantum heat engines.

In a study published in EPJ D, Kai-Wei Sun and colleagues from Beihang University, Beijing, China, show methods for controlling the output power and efficiency of a quantum thermal engine based on the two-atom cavity. In the familiar heat engine model at macroscopic scale, referred to as the Carnot heat engine, the efficiency increases as a function of the ratio between the temperatures of the low-and high-temperature baths. By comparison, the efficiency of two-level quantum is related to the level of quantum entanglement in these two states, which are either at a low or a high temperature, and display the same probability of being occupied.

The authors found that their heat engine model only yields high efficiency and when the number of photons involved is small; accordingly, its efficiency and power output rapidly decrease as the number of photons increases. This implies the need to reduce the number of photons to improve the of these engines, so that we can increase the quantum manipulation power and realise quantum information processing based on atom-cavity systems.

Explore further: Miniaturised 'heat engines' could power nanoscale machines of the future

More information: Kai-Wei Sun et al, A quantum heat engine based on Tavis-Cummings model, The European Physical Journal D (2017). DOI: 10.1140/epjd/e2017-80101-3

Related Stories

Physicists investigate fundamental limits of quantum engines

August 4, 2017

(Phys.org)—Quantum engines are known to operate differently than—and in some cases, outperform—their classical counterparts. However, previous research on the performance of quantum engines may be overestimating their ...

Nanoscale heat engine exceeds standard efficiency limit

January 27, 2014

(Phys.org) —In 2012, a team of physicists from Germany proposed a scheme for realizing a nanoscale heat engine composed of a single ion. Like a macroscale heat engine, the theoretical nanoscale version can convert heat ...

What is quantum in quantum thermodynamics?

October 12, 2015

(Phys.org)—A lot of attention has been given to the differences between the quantum and classical worlds. For example, quantum entanglement, superposition, and teleportation are purely quantum phenomena with no classical ...

Superconducting qubits can function as quantum engines

October 2, 2017

(Phys.org)—Physicists have shown that superconducting circuits—circuits that have zero electrical resistance—can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum ...

Recommended for you

Muons spin tales of undiscovered particles

April 20, 2018

Scientists at U.S. Department of Energy (DOE) national laboratories are collaborating to test a magnetic property of the muon. Their experiment could point to the existence of physics beyond our current understanding, including ...

Integrating optical components into existing chip designs

April 19, 2018

Two and a half years ago, a team of researchers led by groups at MIT, the University of California at Berkeley, and Boston University announced a milestone: the fabrication of a working microprocessor, built using only existing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.