Formation of magma oceans on exoplanet

October 24, 2017, University of Vienna
Development of a magma ocean through induction heating in the mantle of exoplanet Trappist-1c. Credit: IWF/ÖAW

Induction heating can completely change the energy budget of an exoplanet and even melt its interior. In a study published by Nature Astronomy an international team led by the Space Research Institute of the Austrian Academy of Sciences with participation of the University of Vienna explains how magma oceans can form under the surface of exoplanets as a result of induction heating.

When a conductive material is embedded in a changing magnetic field, an electrical current is produced inside the body by a process called . If the electrical current is strong enough, it can heat the material in which it flows because of electrical resistance. This process called induction heating is widely used in industry to melt materials and at home to cook using induction stoves.

Fast rotation causes heating

An international team led by the Space Research Institute (IWF) of the Austrian Academy of Sciences (OeAW) with participation of the Department of Astrophysics of the University of Vienna was inspired by these examples. "We wanted to investigate if induction heating can play a role on a much bigger scale," explains first author Kristina Kislyakova. "We were particularly interested in planets orbiting that have ." These stars can rotate very rapidly, which causes the at the planet's orbit to change rapidly as well. In such cases, induction heating can take place inside the planet.

Impacts on planetary habitability

The team studied low mass stars that exhibit some exotic characteristics in comparison to our Sun. They are much smaller and dimmer. Some of them rotate very fast and possess magnetic fields hundreds of times stronger than the solar one. A good example of such a low-mass star is Trappist-1, which hosts a big family of seven close-in rocky planets, three of which may have liquid water on their surface. This planetary system is a top candidate for the search of Earth-like planets.

Kislyakova and her team have calculated the energy release inside the Trappist-1 planets due to induction heating. "We have shown that for some of the planets, the heating is strong enough to drive enormous volcanic activity or even lead to the formation of a magma ocean beneath the planetary surface."

As we know from Earth, strong volcanic activity can have a severe influence on a planet's atmosphere. "Therefore, induction heating can strongly influence the habitability of an exoplanet," adds IWF co-author Luca Fossati. This new study shows that this effect has to be taken into account when studying the habitability and evolution of orbiting low-mass stars.

Explore further: Astronomers take first radio look for habitability of distant planets

More information: K. G. Kislyakova et al. Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating, Nature Astronomy (2017). DOI: 10.1038/s41550-017-0284-0

Related Stories

More to life than the habitable zone

July 13, 2017

Two separate teams of scientists have identified major challenges for the development of life in what has recently become one of the most famous exoplanet systems, TRAPPIST-1.

Recommended for you

Outer solar system experts find 'far out there' dwarf planet

December 17, 2018

A team of astronomers has discovered the most-distant body ever observed in our Solar System. It is the first known Solar System object that has been detected at a distance that is more than 100 times farther than Earth is ...

A new neptune-size exoplanet

December 16, 2018

The remarkable exoplanet discoveries made by the Kepler and K2 missions have enabled astronomers to begin to piece together the history of the Earth and to understand how and why it differs from its diverse exoplanetary cousins. ...

Mars InSight lander seen in first images from space

December 14, 2018

On Nov. 26, NASA's InSight mission knew the spacecraft touched down within an 81-mile-long (130-kilometer-long) landing ellipse on Mars. Now, the team has pinpointed InSight's exact location using images from HiRISE, a powerful ...

Video: Enjoying the Geminids from above and below

December 14, 2018

On the night of December 13, into the morning of December 14, 2018, tune into the night sky for a dazzling display of fireballs. Thanks to the International Space Station, this sky show – the Geminids meteor shower—will ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Solon
1 / 5 (4) Oct 24, 2017
A microwave plasma from a huge solar storm event could melt the surface of Earth down to at least 2 kilometers, might explain how the Deccan and Siberian traps formed, as geologists have yet to be able to locate any vent sources, and there would need to be many of them to form the traps. When thinking of electrical/plasma events affecting planets/moons, we need to think really big, by puny human standards anyway.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.