Cryo-EM imaging suggests how the double helix separates during replication

October 23, 2017, Cold Spring Harbor Laboratory
DNA follows a zig-zag path inside a channel created by two 6-sided rings. This new atomic-level made with cryo-EM technology, suggests how DNA interacts with the two rings just prior to being separated into 'leading' and 'lagging' strands. All life depends on absolutely precise choreogrpahy, when one cells beings to replicate its DNA in order to make two cells. Credit: Van Andel Research Institute

Life would be impossible if the DNA in dividing cells were replicated with anything less than near-perfect precision. Every time a nucleated cell commits to becoming two cells, every "letter" of its genome must be replicated once and only once. In humans, the task boggles the imagination. If unwound, the double helix crammed into each of our cells would measure 6 feet in length. In our bone marrow alone, half a billion new cells are born every minute. These cells alone contain enough DNA to wrap around the earth's equator 25 times. Within daunting tolerances, each new cell must have a genome identical to that of the cell that gave birth to it. Cancer and other diseases can result when the process goes awry.

Figuring out how accurate replication works at the level of individual molecules and atoms is one of the great achievements of modern science. The journey of investigators is not yet done, however. A major unsolved part of the puzzle is understanding how the entire process of copying the genome begins. In new research, insight into how the two stands of the separate in the earliest stages of replication is becoming clear.

A longstanding collaboration by researchers in London, Grand Rapids, Michigan and Cold Spring Harbor Laboratory (CSHL) in New York reports the atomic-level structure of twin helicase enzymes loaded head to head, with the DNA double visible in the circular channel that runs though both helicases. The configuration, a part of the pre-replicative complex (pre-RC), has never been successfully imaged in this configuration before.

The feat was made possible by a new cyro-electron microscopy (cryo-EM) facility at the Van Andel Research Institute, home of one of the lead investigators, Dr. Huilin Li. Dr. Li has collaborated with Dr. Bruce Stillman of CSHL and Dr. Christian Speck, Professor of Genome Biochemistry and Molecular Biology at Imperial College in London for over a dozen years. In 1992, Stillman and colleagues discovered the protein complex called the origin replication complex (ORC), which assembles protein complexes at many locations called "start sites" along the double helix, where replication initiates. Dr. Speck's work showed that ORC combines with other proteins—Cdc6, Cdt1 and the hexamer of Mcm2-7—to begin the process of duplicating DNA.

A great deal of past effort has revealed how ORC assembles and finds start sites. There are many such sites, organized by domains, in the complex human genome; many fewer in simpler forms of life such as baker's yeast. The new research concerns what happens after the initial recognition of the start sites and how the DNA helix might be unwound.

The DNA double helix follows a zig-zag path inside a channel created by two 6-sided rings. This new atomic-level view made with cryo-EM technology, suggests how DNA interacts with the two rings just prior to being separated into 'leading' and 'lagging' strands. All life depends on absolutely precise choreography, when one cell beings to replicate its DNA in order to make two cells. Credit: Van Andel Research Institute

As vividly shown in the new cryo-EM "pictures," the twin six-sided Mcm2-7 helicase enzymes that surround the double helix look like symmetrical insects or, perhaps, twin spacecraft docked head to head. The question answered by the new structure is how the double helix is situated within the channel they form, and how DNA interacts with the surrounding structure. Based on that new knowledge, insight into how the two DNA strands separate, long a mystery, is beginning to be uncovered.

"The new images show that once loaded into the double hexamer—or DH, as we call the head-to-head helicases - the double helix takes a zig-zagging path through the central channel, which is sort of kinked," the authors explain. "The two barrel-shaped hexamers are poised in such a manner that they are ready to untwist the double helix when activated."

One consequence is especially important: the twist in the structure of the complex formed by the double rings creates a tortional strain: they load with an inherent tension that makes them something like a coiled spring. Details in the structure not previously seen reveal how various protein subunits of the twin hexamers latch on to the double helix, via tiny loop-like structures.

The scenario posited by Li, Speck, Stillman and their colleagues is that the twin hexamers load in tension, causing one of the two strands of the DNA passing through them to literally bunch up against a closed "door" on one side of the ring, and the other strand against another closed "door" on the opposite side. The team proposes that one of the two doors springs open when the replication process in activated (through the intervention of protein kinases and other helper molecules).

Through the open door in the helicase - but only on one side - one strand of the double helix is forced out, or "extruded." The team proposes that it becomes what is called the "lagging strand" in the DNA replication process. The other strand, remaining in the center of the helical channel, becomes the "leading strand" in replication. Molecular motors loaded onto the two hexamers provide energy for their separation. One activated helicase passes the other, as replication of each strand proceeds in opposite directions, as deduced by biologists decades ago.

The latest structures were made possible by advances in the technique called cryo-electron microscopy, where an electron beam is passed through frozen, single protein-DNA particles to obtain a near atomic-level 3-dimensional image. The key developers of the method, which is now widely used, received the 2017 Nobel Prize for Chemistry.

Explore further: Scientists reveal open-ringed structure of Cdt1-Mcm2-7 complex

More information: Yasunori Noguchi el al., "Cryo-EM structure of Mcm2-7 double hexamer on DNA suggests a lagging-strand DNA extrusion model," PNAS (2017). www.pnas.org/cgi/doi/10.1073/pnas.1712537114

Related Stories

Study details ringed structure of ORC in DNA replication

February 21, 2017

An international collaboration of life scientists, including experts at Van Andel Research Institute, has described in exquisite detail the critical first steps of DNA replication, which allows cells to divide and most advanced ...

Hijacking the double helix for replication

December 13, 2016

For years, scientists have puzzled over what prompts the intertwined double-helix DNA to open its two strands and then start replication. Knowing this could be the key to understanding how organisms - from healthy cells to ...

Video imaging of single molecule DNA replication

June 15, 2017

Almost all life on Earth is based on DNA being copied, or replicated. Now for the first time scientists have been able to watch the replication of a single DNA molecule, with some surprising findings. For one thing, there's ...

Recommended for you

Scientists ID another possible threat to orcas: pink salmon

January 19, 2019

Over the years, scientists have identified dams, pollution and vessel noise as causes of the troubling decline of the Pacific Northwest's resident killer whales. Now, they may have found a new and more surprising culprit: ...

Researchers come face to face with huge great white shark

January 18, 2019

Two shark researchers who came face to face with what could be one of the largest great whites ever recorded are using their encounter as an opportunity to push for legislation that would protect sharks in Hawaii.

Why do Hydra end up with just a single head?

January 18, 2019

Often considered immortal, the freshwater Hydra can regenerate any part of its body, a trait discovered by the Geneva naturalist Abraham Trembley nearly 300 years ago. Any fragment of its body containing a few thousands cells ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

betterexists
not rated yet Oct 23, 2017
Instead of Focusing on DNA Alone, We have to move BEYOND DNA...OR in Parallel with Research on DNA; We know that Cows listen to/co-exist with humans like Dogs...Usually, they do NOT attack us like some dogs do even though they are far more bulkier than us. What I am trying to say is, Introduce Human Brain-Forming Cells into Growing Cow Embryos AND MAKE THEM AS INTELLIGENT AS US. See What happens. Research is Always to Find The Result. By that time, DNA Research also will explode. Teeth of Cows are meant for Grass, Not to Tear into us. Remove their Horns if you want. Some did it already genetically, it seems.
betterexists
not rated yet Oct 23, 2017
Instead of Focusing on DNA Alone, We have to move BEYOND DNA...OR in Parallel with Research on DNA; Some did it already genetically, it seems .
https://www.wikih...rn-a-Cow
betterexists
not rated yet Oct 23, 2017
Instead of Focusing on DNA Alone, We have to move BEYOND DNA...OR in Parallel with Research on DNA; Some did it already genetically, it seems .
https://www.wikih...rn-a-Cow Hover Mouse over the link to see the entire link.

https://portal.ni...ing.html
betterexists
not rated yet Oct 24, 2017
Instead of Focusing on DNA Alone, We have to move BEYOND DNA...OR in Parallel with Research on DNA; Some did it already genetically, it seems .

Udit Batra, CEO of Life Science/Merck Co. on 1st Patent in CRISPR Tech--"Successful Integration of External DNA into Chromosome". http://markets.bu...05442577

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.