Climate change predicted to reduce size, stature of dominant Midwest plant, study finds

October 11, 2017, Kansas State University
Big bluestem is a dominant prairie grass and major forage grass for cattle. Kansas State University researchers are involved in a study that found climate change is predicted to reduce big bluestem's growth and stature. Credit: Kansas State University

The economically important big bluestem grass—a dominant prairie grass and a major forage grass for cattle—is predicted to reduce its growth and stature by up to 60 percent percent in the next 75 years because of climate change, according to a study involving Kansas State University researchers.

The group of scientists—which included collaborators at Missouri Botanical Garden and Southern Illinois University, Carbondale—has published the study in the peer-reviewed journal Global Change Biology. Kansas State University researchers involved include Loretta Johnson, professor of biology; Mary Knapp, associate agronomist and state climatologist; and Jacob Alsdurf, master's student in biology, Olathe. The paper is a culmination of several years of close collaboration and interdisciplinary studies, including species modeling, plant growth studies and climatology.

Big bluestem, or Andropogon gerardii, is a common grass in natural and restored prairies across the central Midwestern region that includes Kansas, Nebraska, Oklahoma, Missouri and Iowa. The grass species is an important component of forage for the region's livestock industry. It also is commonly used in grassland restoration of prairies across several million acres in the Great Plains region.

"Our results predict that could greatly impact the tallgrass as we currently know it, reducing forage for cattle in the drier parts of grasslands, in places like Kansas," Johnson said.

In the Midwest, big bluestem can grow to 4 to 6 feet tall, but the researchers found that climate change could reduce its height by up to 60 percent in the next 75 years. As a result, the form of big bluestem that grows in the central Midwest could come to resemble the form that currently inhabits eastern Colorado on the edge of the species' range. The tall forms of the Midwest grass could shift to the Great Lakes region where big bluestem is currently less common.

In the Midwest, big bluestem can grow to four to six feet tall. Kansas State University researchers and a collaborative team found that climate change could reduce its height by up to 60 percent in the next 75 years. Credit: Kansas State University

The research team found that most of the change was because of alterations in rainfall that are expected to occur across the area, not because of increases in temperature.

The authors are concerned the dramatic reduction in size of big bluestem foretells a fundamental shift in the nature of the Midwestern grassland ecosystem.

"Because big bluestem is currently a dominant grass species of the Great Plains and makes up to 70 percent of the plant biomass in places, how the ecosystem works could be affected by predicted changes in growth of this species," Johnson said.

"It was said in the past that the tallgrass prairies were so tall that a person riding a horse could literally get lost," said Adam Smith, assistant scientist in global change at the Missouri Botanical Garden. "Big bluestem is an iconic species in this system owing in part to its stature. If smaller forms come to dominate it could cause a fundamental shift in the habitat and ecosystem services prairies provide, such as forage for cattle."

Big bluestem can live several decades, so prairie restoration projects will need to consider the form of plants that would thrive at a site several decades into the future, researchers said.

The analysis also highlights the effects of climate change on common species that typically are not expected to be as vulnerable to anticipated climate change. Worldwide, 1 in 5 plants is already on the brink of extinction and climate change is only expected to add pressure on species struggling to survive. This study indicates that common also may be vulnerable, researchers said.

Explore further: New study tracks nonnative plant species in timing of grassland green-up

More information: Adam B. Smith et al, Phenotypic distribution models corroborate species distribution models: A shift in the role and prevalence of a dominant prairie grass in response to climate change, Global Change Biology (2017). DOI: 10.1111/gcb.13666

Related Stories

Estimating ethanol yields from CRP croplands

March 19, 2010

The scramble to find sufficient land for biofuel production has experts eyeing marginal croplands that have been placed in the Conservation Reserve Program (CRP). Now a study by Agricultural Research Service (ARS) scientists ...

Recommended for you

Meteorite source in asteroid belt not a single debris field

February 17, 2019

A new study published online in Meteoritics and Planetary Science finds that our most common meteorites, those known as L chondrites, come from at least two different debris fields in the asteroid belt. The belt contains ...

Diagnosing 'art acne' in Georgia O'Keeffe's paintings

February 17, 2019

Even Georgia O'Keeffe noticed the pin-sized blisters bubbling on the surface of her paintings. For decades, conservationists and scholars assumed these tiny protrusions were grains of sand, kicked up from the New Mexico desert ...

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.