When anemones bleach, clownfish suffer

October 10, 2017, CNRS
The golden color of the anemones is due to the microalgae present in their tentacles.During high temperature episodes, the microalgae living in symbiosis with the corals are expulsed, which causes the corals to bleach. Credit: Suzanne C. Mills

Coral bleaching is a well-known consequence of climate change. What is less widely known is that sea anemones suffer the same fate, and this reduces the fertility of clownfish living in these anemones, as researchers from the CRIOBE, a laboratory jointly managed by the CNRS, the EPHE and Université de Perpignan Via Domitia, have just demonstrated in French Polynesia. Following a 14-month study, they are publishing their results in Nature Communications on Oct. 10, 2017.

Like corals, live in symbiosis with microscopic algae, which gives them their color. Symbiotic protect themselves from predators by sheltering among the anemones' tentacles, and each month, lay eggs at their base. The anemones are also protected by the clownfish that they host.

Every other day, from October 2015 to December 2016, researchers and students visited 13 pairs of clownfish and their host anemones in the coral reefs of Moorea Island (French Polynesia). This monitoring was conducted before, during and after the 2016 El Niño event that triggered a of the Pacific Ocean (+2°C on Moorea Island compared to the 2007-2015 average—a combined effect of ongoing global warming and the El Niño episode) and a worldwide episode. Half of the anemones monitored in this study bleached as they lost their microalgae. Among the clownfish living in the bleached anemones, the scientists observed a drastic reduction in the number of viable eggs (-73 percent). These fish were laying eggs less frequently and they were also laying fewer and less viable eggs, while these parameters remained unchanged among fish hosted by unbleached anemones.

Blood samples taken from 52 pairs of clownfish (including the 13 previously mentioned) showed a sharp increase in the level of stress hormone cortisol, and a significant drop in concentrations of (the equivalents of testosterone and oestrogen). The bleaching of the anemones due to increased sea surface temperatures is thus a stressor that reduces the levels of sex hormones and thus the fertility of the fish. These links have been found for the first time in the natural environment in which the fish live.

The health of the anemones and the fish improved between three and four months after the end of the warming event, long after temperatures had returned to normal. But would this have been the case had the warming episode been more intense, or longer? And faced with a new warming episode, will the clownfish that have already suffered this initial stress be better acclimatized, or more fragile? To provide some answers to these questions, the team will monitor each individual during the next El Niño episode. Such monitoring is possible due to the fact that clownfish have a fairly long life expectancy and are sedentary, seldom moving from their host anemone.

The clownfish are not an isolated case. Twelve percent of the coastal fish in French Polynesia depend on anemones or corals to feed or to find protection from predators. In cases of prolonged bleaching, like that of the Australian Great Barrier Reef in 2016 and 2017, the renewal of all of these populations could be affected, and with them, the stability of the ecosystems.

Explore further: Clownfish share their sea anemone homes when space is limited

More information: Ricardo Beldade et al, Cascading effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction, Nature Communications (2017). DOI: 10.1038/s41467-017-00565-w

Related Stories

Clownfish share their sea anemone homes when space is limited

April 8, 2016

Clownfish share their sea anemone homes when space is limited, say Australian researchers. They have found that multiple species of clownfish live together in the same host anemone and divide up the space, pushing more subordinate ...

Nemo can't go home

August 20, 2013

Round the planet the loveable clownfish Nemo may be losing his home, a new scientific study has revealed.

Pacific corals in 'worrying' state: researchers

September 6, 2017

A survey of Pacific corals has found many severely bleached, some near-dead, according to marine researchers who warned Wednesday that global warming threatened the precious ecosystem's very survival.

Nemo helps anemone partner breath by fanning with his fins

February 27, 2013

Setting up home in the stinging tentacles of a sea anemone might seem like a risky option, but anemonefish – also known as clownfish and popularised in the movie Finding Nemo – are perfectly content in their unlikely ...

El Nino prolongs longest global coral bleaching event

February 23, 2016

Global warming and the intense El Niño now underway are prolonging the longest global coral die-off on record, according to NOAA scientists monitoring and forecasting the loss of corals from disease and heat stress due to ...

Recommended for you

Semimetals are high conductors

March 18, 2019

Researchers in China and at UC Davis have measured high conductivity in very thin layers of niobium arsenide, a type of material called a Weyl semimetal. The material has about three times the conductivity of copper at room ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.