Researchers find that accurately transcribing DNA overrides DNA repair

October 4, 2017, Baylor College of Medicine
Escherichia coli. Credit: Rocky Mountain Laboratories, NIAID, NIH

A groundbreaking and surprising discovery provides a major conceptual change of what is most important to cells: the fidelity of the DNA transcription process - accurately copying the DNA message into RNA, the precursor to proteins - or DNA repair, which saves broken chromosomes from being lost. As reported in the journal Nature, researchers found that in the model organism E. coli, the fidelity of transcribing DNA comes at the expense of DNA repair.

"If you asked a group of scientists which is more important for a cell, maintaining the integrity of its DNA containing all of the organism's genetic information, or the fidelity of transcription - the process that transcribes DNA into RNA, which leads to protein synthesis - the vast majority would agree that repairing DNA is more important," said corresponding author Dr. Christophe Herman, associate professor of molecular and human genetics and molecular virology and microbiology at Baylor College of Medicine. "In this study we show the opposite."

It is well known that DNA breaks are troublesome for because they can cause major instability in the cell's genes or cell death, if not repaired correctly. In contrast, errors during transcription are generally considered less important because the transcript is temporary, and if one is defective, cells can make another one. For these reasons, most researchers consider that DNA break repair would outweigh transcription to protect DNA integrity, and keep cells from losing their chromosomes.

"Scientists have been studying DNA repair for decades and generated a great deal of information about it. In comparison, we know little about transcription fidelity," said Herman, who also is a member of the Dan L Duncan Comprehensive Cancer Center. "My lab has been studying fidelity of transcription for the last 12 years. We showed years ago that transcription errors can lead to heritable changes. That made us think that transcription fidelity might be more important than we had originally thought. In this study we wanted to investigate the consequences of removing GreA, a factor that helps ensure the fidelity of the transcription process on the bacterium E. coli, on DNA break repair."

An unexpected discovery

"After removing GreA, bacteria were hundreds of times more efficient at repairing DNA damage caused by drugs that mimic radiation," said first author Dr. Priya Sivaramakrishnan, a Ph.D. student in the Herman lab during the development of this project. "Bacteria can repair DNA breaks much faster when GreA is absent."

To pinpoint how the lack of transcription fidelity can lead to faster repair, the researchers developed a novel whole-genome sequencing method, which they have named eXOnucleases sequencing (XO-seq), to physically visualize the different steps of DNA repair in living cells. Using this and other methods, the researchers determined the molecular mechanism by which loss of GreA promotes DNA repair.

The finding that the transcription fidelity factor GreA prevents DNA repair represents a major paradigm shift in the DNA world because it implies that ensuring proper fidelity comes at the cost of lowering the cell's ability to repair DNA. "That was completely unexpected," Herman said.

"To have a process that helps transcribe DNA into high-quality RNA that will produce high-quality proteins, bacteria are paying a hundred-fold price in DNA repair efficiency," said co-author Dr. Susan Rosenberg, Ben F. Love Chair in Cancer Research and professor of molecular and human genetics, of molecular virology and microbiology and of biochemistry and molecular biology at Baylor. Rosenberg also is leader of the Cancer Evolvability Program at the Dan L Duncan Comprehensive Cancer Center at Baylor.

"The conservation of the basic biology of nucleic acids from bacteria to humans is tremendous," said Rosenberg. "We hypothesize that this mechanism discovered in E. coli might also be present in other cells, which would have implications in a number of fields, from cancer to evolution."

Explore further: How life survives: Researchers confirm basic mechanism of DNA repair

More information: Priya Sivaramakrishnan et al, The transcription fidelity factor GreA impedes DNA break repair, Nature (2017). DOI: 10.1038/nature23907

Related Stories

A protein's role in helping cells repair DNA damage

November 1, 2012

(Medical Xpress)—In a new study, University at Buffalo scientists describe the role that a protein called TFIIB plays in helping cells repair DNA damage, a critical function for preventing the growth of tumors.

Recommended for you

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

Race at the edge of the sun: Ions are faster than atoms

March 26, 2019

Scientists at the University of Göttingen, the Institut d'Astrophysique in Paris and the Istituto Ricerche Solari Locarno have observed that ions move faster than atoms in the gas streams of a solar prominence. The results ...

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.