Tracing the light inside an LED

September 14, 2017, University of Twente
Tracing the light inside an LED
Absorption curve: blue is according to diffusion theory, red is the new approach, black is numerical validation. Credit: University of Twente

The performance of white LEDs can be improved, based on better knowledge of the absorption and scattering of light inside the LED. A new method, developed by the University of Twente in The Netherlands and Philips Lighting, can lead to efficiency improvement and powerful design tools.

White LEDs can be made even more efficient and powerful, researchers of the University of Twente and Philips Lighting now prove. They found a detailed way to describe the that stays inside the LED by and scattering. This is very valuable information for the design process.

From relatively weak light sources to strong lights at home and in cars, for example : since the blue and white LED were invented, we've seen a rapid development in possible applications. Low energy consumption and long lifetime are major advantages over existing lighting solutions. White LEDs consist of a semiconductor emitting blue light, with on top of that phosphor plates that turn the into yellow. What we see then, is white light. The light will be scattered by the phosphor particles, but it is absorbed as well. What part of the light will exit the LED, is not easy to predict. Unless you look at absorption and scattering in another way, according to Maryna Meretska and her colleages. Theory from astronomy helps.

What makes good prediction particularly difficult: some of the light is absorbed, but re-emitted in another colour. One way is trying to define all possible light rays, and use a lot of computing time to get a result. This doesn't give much insight in what is actually happening. A theory that is often used for light propagation in a LED, is diffusion theory. In strongly absorbing media, however, this approach isn't valid anymore. Meretska therefore has built a setup to collect all the light around the phosphor plates, in the whole visual spectrum. Based on this, absorption and scattering can be deduced using the radiative transfer equation, well known in astronomy. This results in a full description of inside and outside the plates. Compared to a description using diffusion theory, the absorption level is up to 30 percent higher. At the same time, the method is about 17 times faster than the numerical approach.

These new insights can lead to powerful and predictive tools for LED designers. They help in further improving the efficiency and overall performance.

The research has been done in the Complex Photonic Systems group of UT's MESA+ Institute for Nanotechnology, together with Philips Lighting in Eindhoven. The University of Twente has a strong concentration of research groups and facilities within the rapidly growing field of photonics.

Explore further: Important step in understanding of light scattering

More information: M. L. Meretska et al. Analytical modeling of light transport in scattering materials with strong absorption, Optics Express (2017). DOI: 10.1364/OE.25.00A906

Related Stories

Important step in understanding of light scattering

February 26, 2016

A team of researchers from the University of Twente and from Philips in the Netherlands has succeeded in taking an important step in understanding how light is scattered, absorbed and re-emitted in white light emitting diodes ...

Textured LED gives green light to Li-Fi

August 10, 2017

Standard light-emitting diodes (LEDs) used for home lighting can now transmit data more rapidly between electronic devices, thanks to new research from A*STAR.

Giving LEDs a cozy, warm glow

November 19, 2014

When the 2014 Nobel Prize in physics was awarded this October to three Japanese-born scientists for the invention of blue light emitting diodes (LEDs), the prize committee declared LED lamps would light the 21st century. ...

Manipulating light inside opaque layers

April 22, 2016

Light propagating in a layer of scattering nanoparticles, shows the principle of diffusion - like tea particles in hot water. The deeper light is penetrating into the layer, the lower the energy density. Scientists of University ...

Recommended for you

New study explores cell mechanics at work

June 19, 2018

It's a remarkable choreography. In each of our bodies, more than 37 trillion cells tightly coordinate with other cells to organize into the numerous tissues and organs that make us tick.

The secret to measuring the energy of an antineutrino

June 18, 2018

Scientists study tiny particles called neutrinos to learn about how our universe evolved. These particles, well-known for being tough to detect, could tell the story of how matter won out over antimatter a fraction of a second ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.