Important step in understanding of light scattering

February 26, 2016 by Jochem Vreeman, University of Twente
Important step in understanding of light scattering

A team of researchers from the University of Twente and from Philips in the Netherlands has succeeded in taking an important step in understanding how light is scattered, absorbed and re-emitted in white light emitting diodes (LEDs). This breakthrough in research is relevant to everyday lighting applications, and is being published in the American magazine Journal of Applied Physics.

There is a strong worldwide drive to efficiently generate for many every day lighting applications. The drive is notably fueled by the fact that some 10% of total electricity production is consumed by lighting. It is a modern approach to employ efficient and long-lived white light emitting (LEDs). State-of-the art white-light LEDs take advantage of the fact that essential components are not transparent, but that light is scattered many times (see figure above). Light then performs what is known as a "random walk", similar to the path of hikers lost in a dense forest, who want to return home, yet at every step they lose track of where they came from. As a result light becomes diffuse, which serves to obtain an even lighting without hot spots or without angular coloring, which is highly desired for many applications. Moreover, photons are recycled to yield more red and yellow light. Thereby cost efficiency is improved, and energy consumption is reduced.

Monte Carlo Techniques

"Challenges in understanding the optical properties of white LEDs arise from a limited understanding of the light scattering, absorption and re-emission" says prof. Willem Vos, the leading researcher of the group. The properties of the LEDs are currently described by models wherein light scattering, absorption and re-emission is treated by ray-tracing and Monte Carlo techniques. Vos notes that "currently the LED spectra cannot be predicted quantitatively, or that optical parameters must be "fudged" to match with measured data". These limitations clearly hamper the design and development of efficient white LEDs.

Important step in understanding of light scattering

The Twente and Philips Lighting team took an original approach to characterize light scattering, absorption and re-emission. The researchers, collected the light exiting in all directions from a LED diffuser by carefully spectrally filtering the incoming light and separately filtering the outgoing light (see fig. 2a). In the wavelength range from green to red the total transmission differs by 10% points from transmission measured in conventional manner. They then used Nanophotonic theory, wherein is described from first principles, to derive from the measurements the mean free path, which is the average distance after which photons lose their sense of direction (like the hikers in the forest). The mean free path differs by more than 50 % from the one extracted with the traditional approach (see fig. 2b). The new insights are being used to considerably improve the design of white LEDs. Notably this yields more energy-efficient LEDs that have a lower environmental impact in a much more efficient way.

Details on the Paper

The research paper "How to distinguish elastically scattered light from Stokes shifted for solid-state lighting?" is authored by Maryna Meretska, Ad Lagendijk, Henri Thyrrestrup, Wilbert IJzerman, Allard Mosk and Willem Vos, and appears in Journal of Applied Physics.

Explore further: Shining a light on the use of light-emitting diodes in the food industry

More information: How to distinguish elastically scattered light from Stokes shifted light for solid-state lighting? arxiv.org/abs/1511.00467

Related Stories

New LED with luminescent proteins

January 12, 2016

Scientists from Germany and Spain have discovered a way to create a BioLED by packaging luminescent proteins in the form of rubber. This innovative device gives off a white light which is created by equal parts of blue, green ...

Bright, laser-based lighting devices

September 27, 2013

As a modern culture, we crave artificial white lights—the brighter the better, and ideally using less energy than ever before. To meet the ever-escalating demand for more lighting in more places and to improve the bulbs ...

Absorption straightens the drunken stagger of light

July 1, 2014

(Phys.org) —In a study partly funded by the FOM Foundation, physicists from the University of Twente and Yale University have discovered that light travelling through an opaque material follows a straighter path, if the ...

Recommended for you

Study: Pulsating dissolution found in crystals

January 17, 2018

When German researchers examined time-lapse images of dissolving crystals at the nanoscale, they found a surprise: Dissolution happened in pulses, marked by waves that spread just like ripples on a pond.

X-rays reveal chirality in swirling electric vortices

January 16, 2018

Scientists used spiraling X-rays at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) to observe, for the first time, a property that gives handedness to swirling electric patterns – dubbed ...

Slow 'hot electrons' could improve solar cell efficiency

January 16, 2018

Photons with energy higher than the band gap of the semiconductor absorbing them give rise to what are known as hot electrons. The extra energy in respect to the band gap is lost very fast, as it is converted into heat and ...

Quan­tum physics turned into tan­gi­ble re­al­ity

January 16, 2018

ETH physicists have developed a silicon wafer that behaves like a topological insulator when stimulated using ultrasound. They have thereby succeeded in turning an abstract theoretical concept into a macroscopic product.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.