Secrets of Bonsai: Uncovering the mechanism of root regeneration

September 14, 2017
Increased levels of AUX/IAA19, which indicate an activation of auxin signaling, were observed in the cut-end of root-cut plants compared to intact plants. Scale bar = 0.1 mm. Credit: Xu D. et al., Plant and Cell Physiology, September 1, 2017

The molecular mechanism behind root regeneration after root cutting in plants has been discovered. A finding which could lead to the development of new methods for regulating plant growth in agriculture and horticulture.

A plant's root system is highly regenerative. It plays a critical role in absorbing water and nutrients from the soil and therefore its loss can be an immediate threat to their lives. The plasticity of the root system also helps adopt to adverse conditions such as draught. An agricultural technique called root pruning, or root cutting, uses this natural robustness to control plant growth. It has also been used in horticulture to control plant size and vigor as seen in Bonsai.

Previous studies have suggested that root regeneration occurs through the induction of lateral root (LR) formation, and that auxin, a well-studied growth hormone involved in various processes of plant development, plays a role in the process. However, the behind root regeneration has remained largely unknown.

According to a new study published in Plant and Cell Physiology, scientists have identified for the first time that YUCCA9, one of the eleven YUCCA genes involved in auxin synthesis, plays a primary role in root-system regeneration.

Using Arabidopsis as a model, the research team led by Associate Professor Masaaki Watahiki of Hokkaido University found that root cutting induces both LR formation and the growth of existing roots. Experiments investigating gene expressions and using mutants identified YUCCA9 as the primary gene responsible for auxin biosynthesis during root-system regeneration after root cutting. In collaboration with Professor Masashi Asahina of Teikyo University, the team also found an evident increase in the level of auxin after cutting.

Auxin commonly shows an uneven distribution in plant bodies as a result of polar transportation, leading to gravity- or light-induced bending of the plant. The team found that the polar transport system is required for root regeneration as well.

Interestingly, the team revealed that the defective LRs of some auxin signaling mutants can be recovered by root cutting, suggesting the robustness of the auxin signaling induced by root cutting. They also showed a redundancy of auxin biosynthesis genes by mutant analysis.

"We identified the primary gene of biosynthesis which is responsible for root regeneration upon root damage. This finding could lead to the development of new methods for suppressing or enhancing , and thus controlling in agriculture and horticulture," says Masaaki Watahiki

Explore further: Hormonal tug-of-war helps plant roots navigate their journey through the soil

More information: Dongyang Xu et al, YUCCA9-Mediated Auxin Biosynthesis and Polar Auxin Transport Synergistically Regulate Regeneration of Root Systems Following Root Cutting, Plant and Cell Physiology (2017). DOI: 10.1093/pcp/pcx107

Related Stories

Getting to the root of nutrient sensing

June 14, 2010

New research published by Cell Press in the June 15th issue of the journal Developmental Cell, reveals how plants modify their root architecture based on nutrient availability in the soil.

How thirsty roots go in search of water

May 11, 2017

Scientists from the University of Nottingham, England and Tohoku University, Japan have helped to solve a mystery that has fascinated scientists since Charles Darwin - how plant roots sense water and change direction to find ...

Rooting about with circadian rhythms

July 9, 2015

The circadian clock drives our physical, mental and behavioural changes. In fact most living things respond to the solar and lunar cycle – day and night. And plants are no different. But scientists at The University of ...

Recommended for you

Testing the advantage of being left-handed in sports

November 22, 2017

(Phys.org)—Sports scientist Florian Loffing with the Institute of Sport Science, University of Oldenburg in Germany has conducted a study regarding the possibility of left-handed athletes having an advantage over their ...

Re-cloning of first cloned dog deemed successful thus far

November 22, 2017

(Phys.org)—A team of researchers with Seoul National University, Michigan State University and the University of Illinois at Urbana-Champaign has re-cloned the first dog to be cloned. In their paper published in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.