Pulsar jackpot reveals globular cluster's inner structure

September 13, 2017, Green Bank Observatory
Graphic showing locations of millisecond pulsars inside the globular cluster Terzan 5 in an optical image taken by the Hubble space telescope. Pulsars represented in blue are accelerating toward observers on Earth; those in red are accelerating away. These relative accelerations were derived by measuring minute changes in the speed of rotation of the pulsars. Credit: B. Saxton (NRAO/AUI/NSF); GBO/AUI/NSF; NASA/ESA Hubble, F. Ferraro

The Milky Way is chock full of star clusters. Some contain just a few tens-to-hundreds of young stars. Others, known as globular clusters, are among the oldest objects in the Universe and contain up to a million ancient stars.

Some are thought to be fragments of our galaxy, chiseled off when the Milky Way was in its infancy. Others may have started life as standalone dwarf galaxies before being captured by the Milky Way during its formative years.

Regardless of their origins, many globular clusters reside either in or behind the dusty regions of our galaxy. For ground- and space-based optical telescopes, however, this poses a challenge. Though it is possible to observe the cluster as a whole, the dust hinders ' efforts to study the motions of individual . If astronomers could track the motions of individual stars, they could see how "lumpy" the globular cluster is or if it contains something really dense, like a giant black hole at its center.

Fortunately, radio waves—like those emitted by pulsars—are unhindered by galactic dust. So rather than tracing the motions of the stars, astronomers should be able to map the motions of pulsars instead. But, of course, things are never that simple. Though globular clusters are brimming with stars, they contain far fewer pulsars.

"That's what makes Terzan 5 such an important target of study; it has an unprecedented abundance of pulsars – a total of 37 detected so far, though only 36 were used in our study," said Brian Prager, a Ph.D. candidate at the University of Virginia in Charlottesville and lead author on a paper appearing in the Astrophysical Journal. "The more pulsars you can observe, the more complete your dataset and the more details you can discern about the interior of the cluster."

Animation showing locations of millisecond pulsars inside the globular cluster Terzan 5. Pulsars represented in blue are accelerating toward observers on Earth; those in red are accelerating away. These relative accelerations were derived by measuring minute changes in the speed of rotation of the pulsars. Credit: B. Saxton (NRAO/AUI/NSF); GBO/AUI/NSF; NASA/ESA Hubble, F. Ferraro

The Terzan 5 cluster is about 19,000 light-years from Earth, just outside the central bulge of our galaxy.

For their research, the astronomers used the National Science Foundation's (NSF) Green Bank Telescope (GBT) in West Virginia. The GBT is an amazingly efficient instrument for pulsar detection and observation. It has exquisitely sensitive electronics, some specifically optimized for this task, and a 100-meter dish, the largest of any fully steerable radio telescope.

Pulsars are neutron stars – the fantastically dense remains of supernovas—that emit beams of radio waves from their magnetic poles. As a pulsar rotates, its beams of radio light sweep across space in a cosmic version of a lighthouse. If the beams shine in the direction of Earth, astronomers can detect the exquisitely steady pulses from the star.

As the pulsars in Terzan 5 move in relation to Earth – drawn in different directions by the varying density of the cluster—the Doppler effect comes into play. This effect adds a tiny delay to the timing if the pulsar is moving away from Earth. It also shaves off the tiniest fraction of a millisecond if the pulsar is moving toward us.

In the case of Terzan 5, astronomers are particularly interested in a class of pulsars known as . These pulsars rotate hundreds of times each second with a regularity that rivals the precision of atomic clocks on Earth.

Video describing how astronomers traced the motions of 36 rapidly rotating pulsars inside Terzan 5 – a massive, ancient star cluster near the center of the Milky Way — to get a clearer picture of the cluster’s interior and likely birthplace. Credit: B. Saxton (NRAO/AUI/NSF); GBO/AUI/NSF; NASA/ESA Hubble

Pulsars achieve these remarkable speeds by siphoning off matter from a nearby companion star. The infalling matter hits the edge of the neutron star at an angle, increasing the 's rate of spin in much the same way that a basketball balanced on the tip of a finger can be spun up by striking its side.

Millisecond pulsars are a particular boon to astronomers because they make it possible to detect almost infinitesimally small changes in the timing of the radio pulses.

"Pulsars are amazingly precise cosmic clocks," said Scott Ransom, an astronomer with the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, and coauthor on the paper. "With the GBT, our team was able to essentially measure how each of these clocks is falling through space toward regions of higher mass. Once we have that information, we can translate it into a very precise map of the density of the cluster, showing us where the bulk of the 'stuff' in the cluster resides."

Previously, astronomers thought that Terzan 5 might be either a warped gobbled up by the Milky Way or a fragment of the galactic bulge. If the cluster were a captured dwarf galaxy, it might also harbor a central supermassive black hole, which is one of the hallmarks of all large galaxies and can be found in many dwarf as well.

The new GBT data, however, show no obvious signs that a single, central black hole is lurking in Terzan 5. "However, we can't yet say for sure if a smaller, intermediate mass black hole resides there. The new observations also provide better evidence that Terzan 5 is a true globular born in the Milky Way rather than the remains of a dwarf galaxy," said Ransom.

Future observations using more sophisticated acceleration models may better constrain the origin of Terzan 5.

Explore further: Millisecond pulsars

More information: Brian J. Prager et al. Using Long-term Millisecond Pulsar Timing to Obtain Physical Characteristics of the Bulge Globular Cluster Terzan 5, The Astrophysical Journal (2017). DOI: 10.3847/1538-4357/aa7ed7

Related Stories

Millisecond pulsars

October 3, 2016

When a star with a mass of roughly ten solar masses finishes its life, it explodes as a supernova, leaving behind a neutron star as remnant "ash." Neutron stars have masses of one-to-several suns but they are tiny in diameter, ...

Image: Hubble looks into Terzan 7

February 17, 2014

Named after its discoverer, the French-Armenian astronomer Agop Terzan, this is the globular cluster Terzan 7—a densely packed ball of stars bound together by gravity. It lies just over 75,000 light-years away from us on ...

Image: Hubble checks out a home for old stars

December 21, 2015

This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the globular cluster Terzan 1. Lying around 20,000 light-years from us in the constellation of Scorpius (The Scorpion), ...

A black hole in a low mass X-ray binary

April 24, 2017

A globular cluster is a roughly spherical ensemble of stars (as many as several million) that are gravitationally bound together, and typically located in the outer regions of galaxies. Low mass X-ray binary stars (LMXBs) ...

Recommended for you

Engineering cellular function without living cells

March 25, 2019

Genes in living cells are activated – or not – by proteins called transcription factors. The mechanisms by which these proteins activate certain genes and deactivate others play a fundamental role in many biological processes. ...

What ionized the universe?

March 25, 2019

The sparsely distributed hot gas that exists in the space between galaxies, the intergalactic medium, is ionized. The question is, how? Astronomers know that once the early universe expanded and cooled enough, hydrogen (its ...

Catalyst advance removes pollutants at low temperatures

March 25, 2019

Researchers at Washington State University, University of New Mexico, Eindhoven University of Technology, and Pacific Northwest National Laboratory have developed a catalyst that can both withstand high temperatures and convert ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.