Millisecond pulsars

October 3, 2016
An artist's impression of a millisecond pulsar and its companion. The pulsar (seen in blue with two radiation beams) is accreting material from its bloated red companion star and increasing its rotation rate. Astronomers have measured the orbital parameters of four millisecond pulsars in the globular cluster 47 Tuc and modeled their possible formation and evolution paths. Credit: European Space Agency & Francesco Ferraro (Bologna Astronomical Observatory)

When a star with a mass of roughly ten solar masses finishes its life, it explodes as a supernova, leaving behind a neutron star as remnant "ash." Neutron stars have masses of one-to-several suns but they are tiny in diameter, only tens of kilometers. They spin rapidly, and when they have associated magnetic fields, charged particles caught in them emit electromagnetic radiation in a lighthouse-like beam that can sweep past the Earth with great regularity every few seconds or less. These kinds of neutron stars are called pulsars, and they are dramatic, powerful probes of supernovae, their progenitor stars, and the properties of nuclear matter under the extreme conditions that exist in these stars.

Millisecond pulsars are ones that spin particularly rapidly, hundreds of times per second. Astronomers have concluded that these objects must be increasing their rotation rates through the accretion of material from a nearby companion star. There are nearly 3000 known . About five percent of them are found in —gravitationally bound, roughly spherical ensembles of stars containing as many as a million stars, with sizes as small as only tens of light-years in diameter. Their crowded environments provide ideal conditions for forming binary stars, and nearly eighty percent of the pulsars in globular clusters are millisecond pulsars. The globular cluster 47 Tucanae (47 Tuc) has twenty-five of them.

CfA astronomer Maureen van den Berg was part of a team of astronomers that studied four unusual millisecond binary pulsars in 47 Tuc whose orbital parameters were unknown. Orbits are key to understanding the origin and evolution of pulsars, their mass transfer and speed-up rates, and even the precise masses of the stars. The scientists analyzed data from 519 radio observations of 47 Tuc assembled over sixteen years. The most shortest period pulsar in the set has a period of only 0.15 days. The longest one is 10.9 days (by the way, both are known to nine decimal places) and has an orbit that is even more circular than the Earth's—in fact, it is the most circular system ever found in a globular cluster. The astronomers estimate that this binary pulsar probably formed when a neutron star encountered a , captured its companion from the binary, and then began accreting material from it to become a pulsar. (A second, less likely scenario is also possible in which the binary pair formed and also evolved together.) The scientists completed similar analyses for the other three objects. The results, the first in a series of papers on the millisecond pulsars in 47 Tuc, characterize for the first time four of its pulsars including one of its most unusual ones, and provide new insights into how these objects formed and the environmental conditions within a globular cluster.

Explore further: Discovery of the companions of millisecond pulsars

More information: A. Ridolfi et al. Long-term observations of the pulsars in 47 Tucanae – I. A study of four elusive binary systems, Monthly Notices of the Royal Astronomical Society (2016). DOI: 10.1093/mnras/stw1850

Related Stories

Discovery of the companions of millisecond pulsars

September 28, 2015

When a star with a mass of roughly ten solar masses finishes its life, it does so in a spectacular explosion known as a supernova, leaving behind as remnant "ash" a neutron star. Neutron stars have masses of one-to-several ...

Astronomers find six new millisecond pulsars

January 26, 2016

(Phys.org)—NASA's Fermi Gamma-ray Space Telescope has once again proven that it is an excellent tool to search for rotating neutron stars emitting beams of electromagnetic radiation, known as pulsars. A team of astronomers, ...

Millisecond pulsar in spin mode

November 3, 2011

Astronomers have tracked down the first gamma-ray pulsar in a globular cluster of stars. It is around 27,000 light years away and thus also holds the distance record in this class of objects. Moreover, its high luminosity ...

Image: Hubble checks out a home for old stars

December 21, 2015

This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the globular cluster Terzan 1. Lying around 20,000 light-years from us in the constellation of Scorpius (The Scorpion), ...

New technique improves estimates of pulsar ages

June 9, 2009

Astronomers at the University of California, Santa Cruz, have developed a new technique to determine the ages of millisecond pulsars, the fastest-spinning stars in the universe.

Recommended for you

A catalog of habitable zone exoplanets

January 18, 2017

The last two decades have seen an explosion of detections of exoplanets, as the sensitivity to smaller planets has dramatically improved thanks especially to the Kepler mission. These discoveries have found that the frequency ...

Galaxy murder mystery

January 17, 2017

It's the big astrophysical whodunnit. Across the Universe, galaxies are being killed and the question scientists want answered is, what's killing them?

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.