The Harvard–Smithsonian Center for Astrophysics (CfA) is one of the largest and most diverse astrophysical institutions in the world, where scientists carry out a broad program of research in astronomy, astrophysics, earth and space sciences, and science education. The center's mission is to advance knowledge and understanding of the universe through research and education in astronomy and astrophysics. The center was founded in 1973 as a joint venture between the Smithsonian Institution and Harvard University. It consists of the Harvard College Observatory and the Smithsonian Astrophysical Observatory. The center's main facility is located between Concord Avenue and Garden Street, with its mailing address and main entrance at 60 Garden Street, Cambridge, Massachusetts. Beyond this location there are also additional satellite facilities elsewhere around the globe. The current director of the CfA, Charles R. Alcock, was named in 2004. The director from 1982 to 2004 was Irwin I. Shapiro.

Address
60 Garden St., Cambridge, Massachusetts, United States
Website
http://www.cfa.harvard.edu/
Wikipedia
http://en.wikipedia.org/wiki/Harvard%E2%80%93Smithsonian_Center_for_Astrophysics

Some content from Wikipedia, licensed under CC BY-SA

Subscribe to rss feed

First results from the Dark Energy Survey

The Dark Energy Survey (DES) program uses the patterns of cosmic structure as seen in the spatial distribution of hundreds of millions of galaxies to reveal the nature of "dark energy," the source of cosmic acceleration. ...

The interiors of stars

The interiors of stars are largely mysterious regions because they are so difficult to observe directly. Our lack of understanding about the physical processes there, like rotation and the mixing of hot gas, introduces considerable ...

Blazar variability

Active galactic nuclei (AGN) are supermassive black holes at the centers of galaxies that are accreting material. These AGN emit jets of charged particles that move at speeds close to that of light, transporting huge amounts ...

Chemistry in the turbulent interstellar medium

Over 200 molecules have been discovered in space, some (like Buckminsterfullerene) very complex with carbon atoms. Besides being intrinsically interesting, these molecules radiate away heat, helping giant clouds of interstellar ...

Jupiter-sized exoplanet discovered through microlensing

The path of a light beam is bent by the presence of mass, and a massive body can therefore act like a lens (a "gravitational lens") to distort the image of an object seen behind it. Scientists first confirmed Einstein's prediction ...

The rotation of Venus

Venus is covered in a thick layer of clouds, one reason that it appears so bright in the sky. Ancient astronomers had a good idea of what (since Copernicus) we know as its orbital period; the modern measurement is that Venus ...

The nature of obscured active galactic nuclei

Most galaxies host a supermassive black hole (SMBH) at their nucleus, one whose mass exceeds a million solar-masses. When material actively accretes onto the SMBH, associated processes can produce an active galactic nucleus ...

page 1 from 55