Researchers unlock potential pathway to treat flesh-eating bacteria

September 18, 2017, Houston Methodist
Credit: CDC

Researchers at Houston Methodist have solved a 100-year-old mystery, providing them a possible key to unlock a pathway for treating diseases caused by flesh-eating bacteria. This is timely news, given the current dangers lurking in the debris and destruction left behind by Hurricane Harvey's floodwaters that destroyed tens of thousands of homes in Texas.

Muthiah Kumaraswami, Ph.D., an infectious diseases researcher at the Houston Methodist Research Institute, is the corresponding author and principal investigator on an article describing his team's findings. The paper will appear the week of Sept. 18 in the early edition of the Proceedings of the National Academy of Sciences (PNAS), one of the world's most cited and comprehensive multidisciplinary scientific journals.

"Group A streptococcus infections are pretty widespread. Not only do they cause several million cases of every year, but also can lead to more severe infections, such as flesh-eating and acute ," Kumaraswami said. "If you don't treat strep throat in children, for instance, recurring infections can lead to those more serious diseases and are very difficult to treat. We don't have a vaccine, so basic research is geared toward finding targets for vaccine development."

In this paper, Kumaraswami said he and his team found a critical target on which to focus for developing a potential Group A Streptococcus vaccine or antibiotic to fight it. By manipulating this target, they hope to either reduce the severity of these infections or clear them up faster.

They discovered a peptide secreted by the bacteria that signals its neighbors to produce a toxin called streptococcal pyrogenic exotoxin B (SpeB). The production of SpeB is critical for the development of necrotizing fasciitis, better known as . Blocking production of that toxin will be crucial for disease prevention and treatment.

"Researchers have known for more than 100 years that Group A strep uses the toxin SpeB and that it is crucial to disease development," Kumaraswami said. "We did not know, however, what signals the timely production of SpeB by Group A streptococcus. Now that we have discovered how Group A strep bacteria communicate with each other to coordinate the production of this toxin, we can target the signaling pathway for vaccine and antimicrobial development."

Kumaraswami says that bacteria talking to each other and producing toxins is not that new. Their communication codes have been characterized for a long time, so researchers know a lot of the classic features in these signals. What's different in what his team discovered is the nature of the language. The Group A streptococcus communication signal they found lacks a majority of those classic hallmarks.

"Typically, the signal is quite long and has a number of characteristic features," Kumaraswami said. "The signal we found is compact and doesn't have many of what we traditionally see in other bacterial , which is probably what contributed to the difficulties in finding it for such a long time. There could be similar atypical signals in other bacteria that have been overlooked, as well, so we believe the discovery of this peptide will likely facilitate discovering additional bacterial peptide signals in other pathogens."

Moving forward, there are several different avenues researchers could take in targeting this peptide signal for either antibiotic or . They can develop antibodies to target it or a competing peptide to jam the communication path, which would allow them to block toxin production and reduce disease severity. The second approach involves triggering the toxin production at the early stage where the level would be minimal. Then, the host's immune response would be triggered and clear the bacterial infection much earlier.

Explore further: Could an HIV drug beat strep throat, flesh-eating bacteria?

More information: Hackwon Do el al., "Leaderless secreted peptide signaling molecule alters global gene expression and increases virulence of a human bacterial pathogen," PNAS (2017).

Related Stories

Could an HIV drug beat strep throat, flesh-eating bacteria?

February 25, 2015

With antibiotic resistance on the rise, scientists are looking for innovative ways to combat bacterial infections. The pathogen that causes conditions from strep throat to flesh-eating disease is among them, but scientists ...

New insights into bacterial toxins

September 5, 2017

A toxin produced by a bacterium that causes urinary tract infections is related to, yet different in key ways from, the toxin that causes whooping cough, according to new research. The findings, which will be published in ...

Nanosponges lessen severity of streptococcal infections

April 24, 2017

In a new study, researchers show that engineered nanosponges that are encapsulated in the membranes of red blood cells can reduce the severity of infections caused by group A Streptococcus, the bacteria responsible for strep ...

Recommended for you

'Zebra' tribal bodypaint cuts fly bites 10-fold: study

January 16, 2019

Traditional white-striped bodypainting practiced by indigenous communities mimics zebra stripes to reduce the number of potentially harmful horsefly bites a person receives by up to 10-fold, according to new research published ...

Big genome found in tiny forest defoliator

January 15, 2019

The European gypsy moth (EGM) is perhaps the country's most famous invasive insect—a nonnative species accidentally introduced to North America in the 1860s when a few escaped from a breeding experiment in suburban Boston. ...

Why haven't cancer cells undergone genetic meltdowns?

January 15, 2019

Cancer first develops as a single cell going rogue, with mutations that trigger aggressive growth at all costs to the health of the organism. But if cancer cells were accumulating harmful mutations faster than they could ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.