Genes that separate humans from fruit flies found

September 29, 2017
What makes us so different to a sea urchin? Sea urchins have just one NCoR gene, while humans have two. Credit: University of Portsmouth

Genes which determine animal complexity – or what makes humans so much more complex than a fruit fly or a sea urchin – have been identified for the first time.

The secret mechanism for how a cell in one animal can be significantly more complex than a similar cell in another animal appears to be due to proteins and their ability to control 'events' in a cell's nucleus.

The research, by biochemist Dr Colin Sharpe and colleagues in the University of Portsmouth, is published in PLoS One.

Dr Sharpe said: "Most people agree that mammals, and humans in particular, are more complex than a worm or a fruit fly, without really knowing why. The question has been nagging at me and others for a long time.

"One common measure of complexity is the number of different cell types in an animal, but little is known about how complexity is achieved at the genetic level. The total number of genes in a genome is not a driver, this value varies only slightly in multicellular , so we looked for other factors."

Dr Sharpe and MRes student, Daniela Lopes Cardoso interrogated large amounts of data from the genomes of nine animals – from humans and macaque monkeys to nematode worms and the fruit fly, and calculated how diverse each was at the genetic level.

They found a small number of proteins which were better at interacting with other proteins and with chromatin, the packaged form of DNA in the cell nucleus.

"These proteins appear to be excellent candidates for what lies behind enormously varied degrees of complexity in animals," Dr Sharpe said.

"We expected to identify genes that interacted directly with DNA to regulate other genes, but this was not the case. Instead we identified genes that interacted with 'chromatin'.

"Our results suggest that the increased ability of certain proteins to interact with each other to regulate the dynamic organisation of chromatin in the nucleus as a component of animal complexity."

The results matter, he said, because biomedical scientists depend on better understanding human disease by studying it in animals. While this has value, there is an underlying concern that an animal model may be too simple to be useful, that results seen in a simpler animal may not correlate with what happens in a more complex animal.

Understanding the inherent differences in how animals are organised at and the limitations to interpretations that this imposes, will provide a more rational selection of appropriate animal models in biomedicine.

Dr Sharpe and team's previous research found that three factors lay behind the proteins made by one gene – NCoR – being more diverse in complex animals such as humans compared to, for example, :

  • Gene duplication, although the total number of genes in the genome doesn't vary significantly, some specific genes duplicate one or more times, for example there is one NCoR gene in sea urchin and two in humans.
  • Single often make more than one . The messenger RNA (mRNA) that links gene to protein can be processed by 'splicing' to generate a range of different mRNAs, each of which encodes a related, but different protein. For example, the sea urchin gene produces just one type of RNA while in humans the NCoR2 gene produces well over 30 and each is likely to have a different function.
  • Most proteins consist of domains that have a specific function. Dr Sharpe and team found that the number of domains increases, again with NCoR, from one in sea urchins to three in humans.

Explore further: Humans and sponges share gene regulation mechanisms

More information: Daniela Lopes Cardoso et al. Relating protein functional diversity to cell type number identifies genes that determine dynamic aspects of chromatin organisation as potential contributors to organismal complexity, PLOS ONE (2017). DOI: 10.1371/journal.pone.0185409

Related Stories

In fruit fly and human genetics, timing is everything

May 25, 2017

Every animal starts as a clump of cells, which over time multiply and mature into many different types of cells, tissues, and organs. This is fundamental biology. Yet, the details of this process remain largely mysterious. ...

What happens to gene transcription during DNA damage?

February 17, 2017

It's well known that when the DNA in a cell is damaged, the cell responds by activating specific genes that help defend the integrity of its genome. But less well studied is the fact that the cell actually shuts down the ...

Recommended for you

The astonishing efficiency of life

November 17, 2017

All life on earth performs computations – and all computations require energy. From single-celled amoeba to multicellular organisms like humans, one of the most basic biological computations common across life is translation: ...

Unexpected finding solves 40-year old cytoskeleton mystery

November 17, 2017

Scientists have been searching for it for decades: the enzyme that cuts the amino acid tyrosine off an important part of the cell's skeleton. Researchers of the Netherlands Cancer Institute have now identified this mystery ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

john berry_hobbes
5 / 5 (1) Sep 29, 2017
Too cool. Makes sense. I will never understand how people poo-poo basic research.

Am I correct in believing that the RNA nut has been permanently banned?

Even cooler.
betterexists
not rated yet Sep 30, 2017
May be the genes we have should be introduced into them at embryonic or adult stages 1 by 1. OR even partial genes...Who knows. Just Introduce complexity by transferring technique. What always makes me wonder is how come plants grab & gobble up insects (eg. Nepenthes, The Pitcher Plant) . WHY NOT Introduce its genes into grass or some other useless plants to turn them also into insect-eaters ?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.